Читаем Занимательная электроника полностью

Отметим также, что использование обратной связи в указанной ранее степени уменьшает и выходное сопротивление всего усилителя, которое становится очень близким к нулю — точнее, примерно равным Rвых(1 +Кβ), где Rвых — это собственное выходное сопротивление ОУ, лежащее обычно в диапазоне сотен ом. Так что выходное сопротивление получается порядка 1 миллиома. Только не забывайте, что мощность выходного каскада ограниченна, и если вы его перегрузите, то от падения напряжения на нагрузке вас уже никакая обратная связь не спасет. Для общего развития попутно заметим, что в системе, представленной на рис. 12.2, ничего не изменится, если схему перевернуть: считать за усилитель узел обратной связи, за узел обратной связи для него — сам усилитель, за входной сигнал — выходной и наоборот.

Типичный пример такой двойственности мы увидим в схеме простейшего термостата далее. Все зависит только от терминологии, ^которая есть лишь вопрос удобства. Это хорошо иллюстрирует то философское положение, что мы слишком часто оперируем реальными вещами в зависимости от того, как мы их назвали, в то время как на самом деле их поведение совершенно от этого не зависит.


Базовые схемы усилителей на ОУ


Схема неинвертирующего усилителя (рис. 12.3, а) нам хорошо знакома — именно она составляет основу лабораторного источника питания из главы 9 (см. рис. 9.12). Анализ ее элементарно прост и исходит из рассмотренных ранее правил: Uoc = Uвх, т. е.:

Uвх= Uвых·R2/(R1 + R2).

Тогда коэффициент усиления:

Кус = Uвых/Uвх = (R1 + R2)/R2 = 1 + R1/R2,

каким мы его и предполагали в главе 9.



Рис. 12.3.Базовые схемы на ОУ:

а — неинвертирующий усилитель; б — инвертирующий усилитель, в — повторитель; г — инвертирующий усилитель с высоким коэффициентом усиления


Единица, которая плюсуется к отношению сопротивлений резисторов обратной связи в выражении для коэффициента усиления, — очень важное дополнение, потому что если убрать в схеме неинвертирующего усилителя резистор R2 (т. е. принять его равным бесконечности), то отношение сопротивлений станет равным нулю, а Кус — равным 1. Соответствующая схема показана на рис. 12.3, в и носит название повторителя. Зачем она нужна, если ничего не усиливает? Эта схема обладает одним бесценным свойством: ее входное сопротивление равно практически бесконечности, а выходное — практически нулю (в пределах, конечно, мощности выходного каскада, как мы уже говорили). Поэтому повторитель очень часто используют в случаях, когда нужно согласовать источник сигнала с высоким выходным сопротивлением с низкоомным приемником, и мы еще увидим примеры такого согласования.

В неинвертирующем усилителе обратная связь носит название обратной связи по напряжению. В отличие от него, в инвертирующем усилителе (рис. 12.3, б) обратная связь имеет характер обратной связи по току, и вот почему. Так как здесь неинвертирующий вход имеет потенциал «земли», то и инвертирующий тоже всегда будет иметь такой же потенциал. Следовательно, от входа через резистор R2 потечет некий ток (Iвх). А раз мы договорились, что сам вход ОУ тока не потребляет, то этот ток должен куда-то деваться, и он потечет через резистор R1 на выход ОУ.

Таким образом, входной ток (Iвх) и ток обратной связи (Iос) — это один и тот же ток. Причем потенциал выхода ОУ вынужденно станет противоположным по знаку потенциалу входа — иначе току некуда будет течь. Чему равен коэффициент усиления? Поскольку Uвх/R2 = Uвых/R1, то Кус = Uвых/Uвх = R1/R2. Обратите внимание, что в этом случае, в отличие от неинвертирующей схемы, единицу прибавлять не нужно. Поэтому R2 в данном случае есть необходимый элемент схемы и не может равняться ни нулю, ни бесконечности, за исключением того случая, когда источник сигнала сам по себе представляет источник тока, а не напряжения, — тогда R2 из схемы можно (и нужно) исключить и подать токовый сигнал прямо на вход ОУ.

Похожее на приведенные соотношения уравнение для коэффициента усиления мы получали при рассмотрении транзисторного усилительного каскада в главе 6, где оно было равно отношению коллекторной нагрузки к сопротивлению в эмиттерной цепи. Это обусловлено тем, что в транзисторном каскаде также имеет место обратная связь.

Отметим, что подавать именно нулевой потенциал на неинвертирующий вход совершенно необязательно — скажем, если вы используете однополярный источник питания, то на неинвертирующий вход подается потенциал «искусственной средней точки», как это было сделано в схеме УМЗЧ из главы 11. Можно и любой другой, и мы еще будем этим широко пользоваться.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки