Читаем Занимательная электроника полностью

Во всем этом деле есть еще один нюанс. Что будет происходить в момент, когда напряжения на входах компаратора сравняются? Чувствительность у компаратора огромная, а как в сигнале датчика, так и на выводе задающего делителя всегда присутствует хоть маленькая, но помеха, и конденсатор С1 ее не устранит полностью — если даже все идеально заэкранировать, роль помехи сыграют собственные шумы компонентов схемы, которые имеются принципиально (если температура, конечно, отличается от абсолютного нуля). Поэтому в момент равенства напряжений на выходе компаратора появится «дребезг» — он будет быстро-быстро переключаться туда-сюда, переключая и реле тоже. В случаях, подобных нашему, при использовании в качестве исполнительного механизма электронного реле с zero-контролем (или, скажем, транзистора), на этот дребезг можно закрыть глаза. Отсутствует дребезг и в схемах с пропорциональным регулированием, пример которого мы увидим далее. Но в других случаях нечеткое срабатывание приводит к разным неприятным последствиям: для обычного тиристорного реле (вроде самодельного из главы 22) это помехи, для электромеханических реле, сверх того, еще и быстрый износ контактов, да и просто далеко не услаждающий слух шум.

Для того чтобы избежать этого явления, в схему вводит так называемый гистерезис (от греческого hysteresis — отставание реакции от вызвавшего ее внешнего воздействия). На рис. 12.10 показана идея того, как это делается с помощью положительной обратной связи, охватывающей компаратор, хотя, как мы увидим далее, делать именно так необязательно.



Рис. 12.10.Схема компаратора с гистерезисом


Напряжение питания всей схемы в данном случае однополярное. Пусть напряжение Uвх ниже напряжения на делителе Uзад? тогда на выходе компаратора напряжение равно положительному напряжению питания (все компараторы поддерживают полный диапазон напряжений по выходу — Rail-to-Rail).

В этом случае резистор R1 шунтирует R2, и напряжение Uзад больше того значения, которое оно бы имело в отсутствие резистора R1, — при указанных на схеме номиналах и напряжении питания оно равно 5,24 В. Когда Uвх увеличится и достигнет Uзад, компаратор переключится, и напряжение на выходе станет равным нулю. Резистор R1 теперь шунтирует R3, и напряжение на делителе Uзад станет ниже — оно будет равно 4,76 В. Теперь небольшая помеха не страшна — чтобы переключиться обратно, напряжение на входе должно опуститься аж на целых 0,48 вольта. Состояние компаратора при переключении как бы фиксируется.

Величина разницы в порогах (0,48 В в данном случае) называется зоной нечувствительности. Естественно, наличие этой зоны усугубляет влияние тепловой инерции нагревателя — включение-выключение нагревателя происходит позже, чем надо бы, и перерегулирование растет. Поэтому величину этой зоны при необходимости качественного регулирования нужно выбирать очень аккуратно. Сложность введения гистерезиса таким, если можно так выразиться, «академическим» способом в реальных схемах обусловлена тем обстоятельством, что половинки входного делителя обычно не равны друг другу, к тому же чаще всего (как в нашем случае) делитель этот есть переменное сопротивление, и зона нечувствительности будет зависеть от положения движка потенциометра.

Должен сказать, что обычные электромеханические реле сами по себе имеют гистерезисную характеристику — как мы отмечали в главе 7, напряжение срабатывания у них может в несколько раз превышать напряжение отпускания. Так что простое снижение чувствительности компаратора (превращенного тогда в обычный ОУ с отрицательной обратной связью), казалось бы, могло бы нам в этом случае помочь. И все же оно не поможет, и дребезг будет появляться все равно, потому что выходное напряжение ОУ с наложенной на него помехой тогда станет нарастать очень медленно, и в момент достижения напряжения срабатывания реле начнет срабатывать очень неуверенно — несколько раз пытаясь сработать, но затем откатываясь назад, и издавая при этом характерное такое жужжание. Поэтому будет лучше и для нас, и для реле, если мы введем контролируемый гистерезис по всем правилам. Один из способов, как это можно сделать практически, сейчас мы и продемонстрируем.


Терморегулятор «для дома для семьи»[16]


Обычное устройство для нагревания воды в условиях отсутствия центрального горячего водоснабжения (например, в дачном домике) состоит из бака на 5-20 л со встроенным электронагревателем (ТЭНом) мощностью 1–2 КВт. Использовать его без терморегулятора неудобно — приходится внимательно следить за тем, чтобы вода не закипела, да и получается она либо слишком горячая, либо наоборот — недогретая.

На рис. 12.11 изображена схема термостата на этот случай.



Рис. 12.11.Схема термостата для нагревания воды


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки