Читаем Занимательная электроника полностью

На практике для измерения температуры электронными методами используют в основном две разновидности датчиков: металлические термометры сопротивления и полупроводниковые датчики. Термисторы (терморезисторы) для измерения температуры применяют редко, в некоторых специфических случаях, т. к. их единственное достоинство в этом плане — высокая чувствительность — не перевешивает многочисленные недостатки, среди которых в первую очередь нелинейность и, кроме того, невысокая стабильность. Правда, существуют специальные высокостабильные миниатюрные алмазные термисторы (выполненные на основе монокристаллов искусственного алмаза), которые могут работать при температурах до 600 °C, но их температурный коэффициент всего раза в полтора выше, чем у металлов, и они используются также в специфических случаях — например, в печках лазерных принтеров. Термисторы чаще применяют в схемах регуляторов температуры (см. главы 12 и 27), где их нелинейность не имеет значения.

Еще один способ очень точного измерения температуры предполагает использование специальных термочувствительных кварцевых резонаторов. О них мы еще будем говорить в главе 16, а здесь остановимся лишь на металлических и полупроводниковых датчиках, добавив вначале несколько слов про термисторы.


Термисторы


Для успешного применения термисторов стоит знать их основные свойства. Большинство так называемых NTC-терморезисторов (от английского Negative Temperature Coefficient) имеют падающую экспоненциальную зависимость сопротивления от температуры, которая с хорошей точностью описывается уравнением:


(1)

Здесь RT1 — номинальное сопротивление при температуре Т1 (обычно при 25 °C), В — коэффициент, имеющий размерность °К, который приводится в характеристиках термистора для некоторого диапазона температур, например, для 25-100 °C. При отсутствии фирменного технического описания величину В несложно вычислить исходя из двух измеренных значений RT, а для ориентировочных расчетов его можно принять равным в пределах 3500–4500.

График, соответствующий уравнению (1), построенный по данным для конкретного термистора В57164-К 103-J с номинальным сопротивлением 10 кОм при 25 °C, приведен на рис. 13.1, а числовые данные, по которым он построен, сведены в табл. 13.1. Из графика мы видим, что крутизна характеристики термистора с повышением температуры снижается (ее значения приведены в третьей колонке таблицы). Эта нелинейность делает термисторы крайне неудобным средством для измерения температур, зато высокая величина крутизны (в среднем раз в десять большая, чем у металлов) очень удобна при использовании их в качестве датчика для регуляторов температуры. Температурный диапазон применения NTC-термисторов ограничен пределами работоспособности полупроводниковых материалов (т. е. диапазоном от -55 до 125 °C).



Рис. 13.1.Температурная характеристика NTC-термистора



Еще одно свойство NTC-термисторов надо всегда иметь в виду при их практическом применении — из-за отрицательного температурного коэффициента, включение термистора в цепь питания напрямую, без резистора, ограничивающего ток, может спровоцировать лавинообразное возникновение эффекта положительной обратной связи. Нагрев термистора приводит к падению его сопротивления, отчего ток через него увеличивается, в свою очередь, увеличивая нагрев еще больше, и если ток не ограничен, то термистор в конце концов попросту расплавится. Потому напрямую к источнику питания термисторы подключать не рекомендуется, а предельная выделяющаяся мощность для обычных «таблеточных» конструкций должна быть ограничена на уровне нескольких десятков, максимум сотен милливатт.


Металлические датчики


Фирменные термометры сопротивления представляют собой обычный резистор из металлической — медной или платиновой[18] — проволоки. Платиновые датчики (ТСП, термометр сопротивления платиновый) наиболее стабильны и употребляются для высокоточных измерений, но они обладают заметной нелинейностью, поэтому значения температуры приходится рассчитывать по таблицам (см., например, [2]). Использование меди более практично — у нее зависимость сопротивления от температуры наиболее близка к линейной в широком диапазоне температур. В диапазоне от -50 до +100 °C погрешность за счет нелинейности в пересчете на температуру не превысит 0,1 °C. Сопротивление датчиков промышленного изготовления точно подогнано под стандартные 10, 50 или 100 Ом. Платиновые датчики используют в диапазоне от -260 до +1100 °C, а медные (ТСМ) от -200 до +200 °C. Доступность меди приводит к искушению изготовить такой датчик самому, и в большинстве случаев это совершенно не возбраняется, хотя прецизионный термометр на самодельном датчике, конечно, не получится (это тот случай, когда структура металла имеет значение — в отличие от аудиокабелей, см. главу 8).


Полупроводниковые датчики


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки