Теперь об устройствах выборки-хранения (УВХ). В простейшем случае это все тот же аналоговый электронный ключ, на вход которого подается измеряемый сигнал, а на выходе стоит конденсатор. До начала измерения ключ открыт, и напряжение на конденсаторе повторяет входное напряжение со всеми его изменениями. В момент начала измерения ключ запирается, и в дальнейшем в качестве измеряемого фигурирует уже напряжение, запасенное на конденсаторе, а изменения на входе на измерительную схему не влияют.
Все, казалось бы, просто, но наличие УВХ, прежде всего, достаточно сильно замедляет процесс, т. к. ключ имеет конечное сопротивление и вместе с конденсатором образует ФНЧ, который требует времени для установления нового значения напряжения и может искажать форму сигнала. Кроме того, как бы ни было велико входное сопротивление компаратора, оно конечно, да и ключ также имеет не бесконечно большое сопротивление в закрытом состоянии. Иногда в схеме присутствует и элемент для принудительного сброса конденсатора (обнуления его), наконец, конденсатор также имеет собственные утечки — все это вынуждает увеличивать емкость конденсатора и еще больше снижать быстродействие схемы. В интегральных АЦП подобного рода нередко даже предоставляется выбор между точностью и быстродействием.
Кроме выборки-хранения, в АЦП последовательного приближения требуется также время на вывод данных и подготовку к следующему циклу измерения. Все указанные причины приводят к тому, что наиболее распространенные 10-12-разрядные АЦП последовательного приближения имеют реальное быстродействие не выше 50-200 кГц. Как пример достаточно продвинутой модели приведем МАХ1132, который имеет разрешение 16 бит при частоте выборок 200 кГц. Тем не менее, АЦП последовательного приближения очень распространены и применяются там, где требуется средняя точность при достаточно высоком быстродействии.
Интегрирующие АЦП
Наиболее точными и одновременно самыми медленными являются интегрирующие АЦП. Их мы рассмотрим наиболее подробно, потому что, во-первых, они могут быть достаточно просты схемотехнически, и иногда даже целесообразно самому соорудить такой узел схемы на дискретных элементах, чем подбирать подходящий чип, и, во-вторых, этот тип АЦП наиболее часто применяется в радиолюбительской практике (если не считать встроенных в микроконтроллеры АЦП последовательного приближения). Далее в этой главе мы сконструируем на основе готового АЦП такого типа цифровой термометр с достаточно хорошими характеристиками.
Разных типов интегрирующих АЦП вообще-то не меньше десятка, но здесь мы подробно рассмотрим только три разновидности. Кстати, интегрирующие АЦП являются примером того, что цифровая техника вовсе не всегда достигает наивысшей точности в сравнении с аналоговой — центральным узлом этих, как мы уже сказали, наиболее точных преобразователей является чисто аналоговый интегратор на ОУ.
Схема самого простого интегрирующего АЦП показана на рис. 17.4. Это так называемый
Рис. 17.4
.Источник тока вместе с конденсатором в данном случае образуют так называемый
Если все же задаться целью расширения входного диапазона вплоть до значений, близких к напряжению питания, то придется делать «нормальный» источник тока. Использование простого полевого транзистора, как мы делали в схеме лабораторного источника питания (рис. 9.12), не выход, т. к. он все же является достаточно грубым источником. С другой стороны, чем городить источник тока (например, по варианту, представленному на рис. 12.5,
* * *