Читаем Занимательная электроника полностью

Начнем с выхода — температура традиционно демонстрируется в виде «ХХ,Х». Таким образом, мы должны использовать только три младших разряда, при этом диапазон температур получится от -99,9 до +99,9 °C. Собственно говоря, такой диапазон чересчур широкий, практически для «погодного» термометра хватило бы и диапазона от -50 до +50 °C. В чем и состоит, как мы уже говорили, недостаток использования готовых микросхем — мы вынуждены устанавливать диапазон в соответствии с возможностями отображения чисел с помощью ПВ2. И при этом мы теряем ровно два двоичных разряда, ужимая диапазон в 4 раза. Никто нам, конечно, не запретит подключить все четыре индикатора и демонстрировать температуру от -199,9 до +199,9 °C. Но если диапазон выше 100 °C еще может пригодиться в быту (скажем, признаком готовности варенья служит температура 105–106 °C), то отрицательный диапазон аж до -200 °C вряд ли потребуется даже для самых специфических производственных нужд, а для научных задач такие температуры измеряются своими способами. Но, конечно, никто не запрещает вам использовать, например, половину диапазона со сдвигом, от -50 до +150 °C — все будет определяться соотношением резисторов, как мы увидим, и наличием индикаторов. Калибровку для простоты будем производить от 0 до 50 градусов, полагая (и это оправдывается на практике), что термодатчик при не слишком большом углублении в отрицательную область ведет себя линейно.

О выборе датчиков мы говорили в главе 13. Так как мы собираемся делать более-менее точный прибор, то выберем не полупроводниковый, а медный резистивный датчик и прикинем, какое было бы желательно иметь его сопротивление. Обычные токи через датчик должны составлять порядка 1–3 мА, иначе медная катушка приемлемых размеров будет сама нагреваться. Проще всего в качестве датчика использовать обмотку малогабаритного реле из серий, например, РЭС-60, РЭС-80, РЭС-79 или РЭС-49 — какое окажется под рукой, и чем старше возрастом, тем лучше, т. к. медь при хранении стабилизирует свои характеристики. Нет проблем использовать и любое другое реле, только крупные конструкции будут иметь значительную тепловую инерцию, к тому же многие, особенно старые, реле не герметизированы.

Указанные мной типы имеют полностью герметизированный металлический корпус, остается только изолировать от внешней среды выводы. У меня «под рукой» оказалось реле типа РЭС-60 с обмоткой 800+120 Ом (паспорт РС4.569.435-01). Изменения на диапазон 100 °C составят в среднем 320 Ом (напомним, что у меди температурный коэффициент сопротивления равен 0,4 %/°). Выберем Uоп = 0,5 В, тогда ток через датчик-обмотку должен составить 0,5 В/320 Ом ~= 1,5 мА. Так как рабочие напряжения здесь не превышают по абсолютной величине 0,5 В, то мы сможем обойтись для АЦП одним питанием +5 В, только надо будет максимально приблизить эти напряжения к середине питания.

Общая схема термометра показана на рис. 17.9.



Рис. 17.9.Прецизионный цифровой термометр на микросхеме 572ПВ2


Рассмотрим сначала включение датчика. Для того чтобы при нуле градусов термометр показывал 0, нужно на вход АЦП подавать разность текущего напряжения на датчике и значения его при нулевой температуре. В данном случае это делается с помощью мостовой схемы. Два идентичных источника тока 1,5 мА (ОУ DA1, транзисторы VT1-VT2 и резисторы R16-R19) образуют верхнюю половину моста, а нижняя состоит из датчика температуры Rt и опорного резистора R20, сопротивление которого равно сопротивлению датчика при 0 °C. Разность этих напряжений подается на АЦП в качестве входного напряжения. Фильтр R22-C6 нужен для лучшего сглаживания помех (конденсатор С6 может быть керамическим). ОУ МАХ478, как указывалось в главе 12, можно заменить, например, на ОР293 (или, с небольшой переработкой схемы, на счетверенный ОР493). Так как в этой схеме общее питание не превышает 5 В, то выбор ОУ с хорошими характеристиками несколько расширяется (ОР296, АБ8607,АО8616 и др.).

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки