А вот с умножением и делением несколько сложнее. Выполнение типовых операций на AVR для чисел с различной разрядностью, вообще говоря, приводится в фирменных руководствах по применению: «аппнотах» (
Как видите, если нужно получить полный 32-разрядный диапазон, просто добавьте еще один регистр для старшего разряда (
adc temp3,r01
Естественно, можно просто обозвать
Деление — значительно более громоздкая процедура, чем умножение, требует больше регистров и занимает больше времени. Операции деления двух чисел (и 8- и 16-разрядных) приведены в той же «аппноте» 200, но они не всегда удобны на практике: часто нам приходится делить результат какой-то ранее проведенной операции умножения или сложения, а он нередко выходит за пределы двух байтов.
Здесь нам потребуется вычислять среднее значение для уточнения результата измерения по сумме отдельных измерений. Если даже само измерение укладывается в 16 разрядов, то сумма нескольких таких результатов уже должна занимать три байта. В то же время делитель — число измерений — будет относительно небольшим и укладывается в один байт. Но мы не будем здесь заниматься построением «настоящих» процедур деления (интересующихся отсылаю к моей книге [21]). Многие подобные задачи на деление удается решить значительно более простым и менее громоздким методом, если заранее подгадать так, чтобы делитель оказался кратным степени 2. Тогда все деление сводится, как мы знаем, к сдвигу разрядов вправо столько раз, какова степень двойки.
Для примера предположим, что мы некую величину измерили 64 раза и хотим узнать среднее. Пусть сумма укладывается в 2 байта, тогда вся процедура деления будет такой:
He правда ли, гораздо изящнее и понятнее? Попробуем от радости решить задачку, которая на первый взгляд требует по крайней мере знания высшей алгебры — умножить некое число на дробный коэффициент (вещественное число с «плавающей запятой»). Теоретически для этого требуется представить исходные числа в виде мантисса-порядок, сложить порядки и перемножить мантиссы. Нам же неохота возиться с этим представлением, т. к. мы не проектируем универсальный компьютер, и в подавляющем большинстве реальных задач все конечные результаты у нас есть целые числа.
На самом деле эта задача решается очень просто, если ее свести к последовательному умножению и делению целых чисел, представив реальное число в виде целой дроби с оговоренной точностью. В десятичной форме это выглядит так: представим число 0,48576 как 48 576/100 000. И если нам требуется на такой коэффициент умножить, к примеру, число 976, то можно действовать, не выходя за рамки диапазона целых чисел: сначала умножить 976 на 48 576 (получится заведомо целое число 47 410 176), а потом поделить результат на 105
, чисто механически перенеся запятую на пять разрядов. Получится 474,10176 или, если отбросить дробную часть, 474. Большая точность нам и не требуется, т. к. и исходное число было трехразрядным.Улавливаете, к чему я клоню? Наше ноу-хау будет состоять в том, что мы для того, чтобы «вогнать» дробное число в целый диапазон в микроконтроллере, будем использовать не десятичную дробь, а двоичную — деление тогда сведется к той же самой механической процедуре сдвига разрядов вправо, аналогичной переносу запятой в десятичном виде.
Итак, чтобы умножить 976 на коэффициент 0,48576, следует сначала последний вручную умножить, например, на 216
(65 536), и тем самым получить числитель соответствующей двоичной дроби (у которой знаменатель равен 65 536) — он будет равен 31 834,76736, или, с округлением до целого, 31 835. Такой точности хватит, если исходные числа не выходят, как у нас, за пределы 3–4 десятичных разрядов. Теперь мы в контроллере должны умножить исходную величину 976 на константу 31 835 (см. процедуру перемножения ранее) и полученное число 31 070 960 (оно оказывается 4-байтовым — $01DA1AF0, потому нашу процедуру