Читаем Занимательная электроника полностью

Для ориентировки можно указать, что транзисторы (и другие приборы), помещенные в распространенный корпус ТО-220 (корпуса транзисторов показаны на рис. 6.11), могут без дополнительного радиатора рассеивать мощность до 1–2 Вт, а маломощные типа КТ3102 (корпус типа ТО-92) — до 0,5 Вт. С радиатором возможности сильно возрастают — корпус типа ТО-220 может рассеять до 60 Вт тепла без вреда для кристалла! Образцом тут могут служить микропроцессоры — какой-нибудь Pentium 4 на частоте 3 ГГц потребляет порядка 70–80 Вт мощности, но с внешним радиатором, дополнительно охлаждаемым специальным вентилятором, работает без вреда для многих миллионов транзисторов, которые он содержит. (Расчетом радиатора мы будем заниматься в главе 9.)



Рис. 6.11.Различные типы корпусов транзисторов


В любом случае следует выбирать минимально необходимый по мощности прибор — не только в целях экономии денег и места на печатной плате, но и потому, что чем меньше диод или транзистор, тем лучше у него остальные второстепенные характеристики: быстродействие, уровень собственных шумов, токи утечки и т. д. Но, как и в других случаях, запас обязательно следует иметь: если вы выберете для работы в цепи с напряжением 100 В и с токами до 1,5 А транзистор КТ815Г — это будет формально правильно, но я бы — для надежности — выбрал сюда что-нибудь помощнее.

* * *

Подробности

Есть правило, касающееся любых компонентов, не только диодов или транзисторов: из всех предельных параметров максимально допустимого значения в процессе работы может достигать только один, остальные должны оставаться как можно ниже (для транзисторов даже приводятся специальные графики, называемые областью безопасной работы). Так, если вы выбрали упомянутый КТ815Г для работы в цепи с напряжениями до 100 В — пусть предельные токи через него заведомо никогда не смогут превысить 0,5 А. Это будет правильно! Представьте себе йога, который тренирован для пребывания голым на холоде в минус 30° в течение часа, спокойно ходит по раскаленным угольям, выдерживает давление на грудную клетку большегрузного автомобиля в 10 тонн и при этом ломает кирпичи одним ударом ладони. А теперь заставьте его проделать все это одновременно! Конечно, не исключено, что он выдержит, — ну, а как нет?

* * *

В подавляющем большинстве случаев номенклатура отечественных транзисторов способна удовлетворить самого взыскательного разработчика. Я это пишу не для того, чтобы «поддержать отечественного производителя», а потому, что так и есть — на практике достаточно располагать пятком-десятком типов транзисторов, чтобы этого хватило почти на все случаи жизни. Среди маломощных транзисторов это КТЗ102 (КТЗ107 — здесь и далее в скобках указывается комплементарный[10] p-n-p-вариант). Лично мне очень нравятся архаичные маломощные транзисторы КТЗ15 (КТ361) — они имеют малые размеры и легко вписываются в современные платы с микросхемами (в том числе и с SMD-компонентами), потому что у них шаг между выводами 2,5 мм, выводы плоские и расположёны также в одной плоскости. Хороши невзыскательные и дешевые транзисторы средней мощности в корпусе ТО-126—КТ815 (КТ814) или КТ817 (КТ816), если требуется ток до 1–2 А. Если требуется высокий коэффициент усиления для средней мощности, стоит присмотреться к КТ972 (КТ973), построенным по «дарлингтоновской» схеме.

Среди мощных транзисторов можно отдать предпочтение КТ819 (КТ818) или, когда требуется «супербета», — КТ829 (n-р-n, а также очень мощной комплементарной паре КТ827/КТ825. Выпускаются почти все эти типы мощных транзисторов в основном в корпусах типа ТО-220, но самая мощная пара КТ827 (КТ825) доступна в металлических корпусах ТО-3, что лучше, чем дешевый ТО-220, т. к. рассеиваемая мощность оказывается раза в 2–4 выше: типовая мощность транзистора в корпусе ТО-220 равна 20–45 Вт, а в корпусе ТО-3 — 80-125 Вт. Но ТО-3 намного неудобнее в технологическом плане, потому что крепление к теплоотводящему радиатору гораздо сложнее, и готовый радиатор подобрать под них нелегко. Впрочем, и мощности такие требуются нечасто.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки