Читаем Занимательная электроника полностью

Следует учитывать еще одну особенность электромагнитных реле. Ток (напряжение) срабатывания у них намного превышает ток (напряжение) отпускания — так, если в характеристиках указано, что номинальное напряжение реле составляет 27 В, то при этом напряжении гарантируется замыкание нормально разомкнутых до этого контактов. Но совершенно необязательно выдерживать это напряжение длительное время — так, 27-вольтовые реле спокойно могут удерживать контакты в замкнутом состоянии вплоть до того момента, пока напряжение на их обмотке не снизится до 8-10 вольт. Подобный гистерезис — очень удобное свойство электромагнитных реле, которое позволяет избежать дребезга при срабатывании-отключении и даже сэкономить энергию при работе с ними. Например, на рис. 7.3, а приведена схема управления реле, которое в начальный момент времени подает на него нужное номинальное напряжение для срабатывания, а затем неограниченное время удерживает реле в сработавшем состоянии при пониженной величине тока через обмотку.

На рис. 7.3 также приведены еще две классические схемы. Схема на рис. 7.3, б называется схемой самоблокировки (после нажатия кнопки «Пуск» ее можно отпустить, и реле останется замкнутым — блокируется) и очень часто применяется в управлении различными мощными устройствами — например, электродвигателями станков или насосов. Мощные реле-пускатели для таких двигателей имеют даже специальную отдельную пару маломощных контактов, предназначенную для осуществления самоблокировки. В этих случаях ток через стандартные кнопки «Пуск» и «Стоп» не превышает тока через обмотку пускателя (который составляет несколько десятков или сотен миллиампер), в то время, как мощность разрываемой цепи может составлять многие киловатты, притом это может быть трехфазная цепь со всякими дополнительными неприятностями вроде огромных индуктивностей обмоток мощных двигателей.



Рис. 7.3.Некоторые схемы включения реле:

а — со снижением напряжения удержания; б — схема самоблокировки с кнопками «Пуск» и «Стоп», в — схема классического электромеханического звонка


Другая схема (рис. 7.3, в) скорее забавна и представляет собой дань прошлому, когда никакой электроники не существовало. Это схема простейшего электрического звонка, который может быть реализован на любом реле. Оно и само по себе при подключении по этой схеме задребезжит (правда, звук может быть самым разным, в зависимости от быстродействия и размеров реле, потому лучше употребить слово «зазуммерит»), но в обычном звонке якорь еще связывают со специальной тягой, которая в процессе работы стучит по металлической чашке, формируя звуковой сигнал. Есть и более простая конструкция электромеханического звонка, когда на обмотку реле просто подают переменное напряжение, от чего якорь вибрирует с его частотой (так устроены, например, звонки старинных телефонов с крутящимся диском), но нас тут интересует именно классическая схема, потому что в ней в чистом виде реализован другой основополагающий принцип электроники, так или иначе присутствующий в любых генераторах колебаний, — принцип положительной обратной связи. Якорь в первый момент притягивается — питание размыкается — якорь отпускает — питание замыкается — якорь притягивается и т. д. Частота генерируемых колебаний зависит исключительно от механической инерции деталей реле.


Стабилитроны


Стабилитрон представляет собой обычный диод с вольт-амперной характеристикой, подобной показанной на рис. 6.1, за одним исключением — при превышении некоторого обратного напряжения (индивидуального для каждого типа стабилитрона) он обратимо пробивается и начинает работать как очень малое сопротивление, при этом уровень напряжения сохраняется. Это можно представить себе, как если бы обычное прямое падение напряжения, составляющее 0,6 В, увеличилось вдруг до большой величины. Стоит только снизить напряжение ниже оговоренного — стабилитрон опять запирается и больше не участвует в работе схемы. Напряжения стабилизации могут быть самыми разными — от 2 до 300 В. Учтите, что тепловая мощность, равная произведению тока через стабилитрон на его напряжение стабилизации, выделяется на нем самом, поэтому чем выше напряжение стабилизации, тем ниже допустимый ток. В характеристиках также указывается обычно минимально допустимое значение тока, при котором стабилитрон еще «держит» нужное напряжение.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки