Читаем Занимательная физика. Книга 1 полностью

Еще не так давно сооружение театра с хорошей акустикой считалось делом счастливой случайности. В настоящее время найдены приемы успешной борьбы с нежелательной длительностью звука (называемой “реверберацией”), которая портит слышимость. В этой книге не место входить в подробности, интересные только для архитекторов. Отмечу лишь, что борьба с плохой акустикой состоит в создании поверхностей, поглощающих излишние звуки. Самым лучшим поглотителем звука является открытое окно (как лучшим поглотителем света служит отверстие); квадратный метр открытого окна принят даже за единицу, которой измеряется поглощение звука. Очень хорошо — хотя и вдвое хуже, нежели открытое окно, — поглощают звуки сами посетители театра: каждый человек равнозначащ в этом отношении примерно половине квадратного метра открытого окна. И если правильно замечание одного физика, что “аудитория поглощает речь оратора в самом прямом смысле слова”, то не менее верно, что пустой зал неприятен для оратора также в непосредственном смысле слова.

Если поглощение звука слишком велико, это также создает ухудшенную слышимость. Во-первых, чрезмерное поглощение приглушает звуки, во-вторых, уменьшает реверберацию до такой степени, что звуки слышатся как бы оборванными и производят впечатление некоторой сухости. Поэтому, если следует избегать слишком длительной реверберации, то и слишком короткая реверберация также нежелательна. Наилучшая величина реверберации для различных зал не одинакова и должна быть установлена при проектировании каждого зала.

В театре имеется и другой предмет, интересный с точки зрения физики: суфлерская будка. Обратили ли вы внимание на то, что во всех театрах она имеет одну и ту же форму? Это оттого, что суфлерская будка — своего рода физический прибор. Свод будки представляет собой вогнутое звуковое зеркало, имеющее двоякое назначение: задерживать звуковые волны, идущие из уст суфлера в сторону публики, а кроме того, отражать эти волны по направлению к сцене.

Эхо со дна моря

Долгое время человек не извлекал из эхо никакой пользы, пока не придуман был способ измерять с помощью его глубину морей и океанов. Изобретение это зародилось случайно. В 1912 г. затонул почти со всеми пассажирами огромный океанский пароход “Титаник”, — затонул от случайного столкновения с большой льдиной. Чтобы предупредить подобные катастрофы, пытались в туман или в ночное время пользоваться эхом для обнаружения присутствия ледяной преграды впереди судна. Способ на практике себя не оправдал, зато натолкнул на другую мысль: измерять глубину морей с помощью отражения звука от морского дна. Мысль оказалась очень удачной.

Рис. 153. Схема действия эхолота

На рис. 153 вы видите схему установки. У одного борта корабля помещается в трюме, близ днища, патрон, порождающий при зажигании резкий звук. Звуковые волны несутся сквозь водную толщу, достигают дна моря, отражаются и бегут обратно, неся с собой эхо. Оно улавливается чувствительным прибором, установленным, как и патрон, у днища корабля. Точные часы измеряют промежуток времени между возникновением звука и приходом эхо. Зная скорость звука в воде, легко вычислить расстояние до отражающей преграды, т. е. определить глубину моря или океана.

Эхолот, как назвали эту установку, совершил настоящий переворот в практике измерения морских глубин. Пользование глубомерами прежних систем возможно было лишь с неподвижного судна и требовало много времени. Лотлинь приходится спускать с колеса, на котором он намотан, довольно медленно (150 м в минуту); почти так же медленно производится и обратный подъем. Измерение глубины в 3 км этим способом отнимает 3/4 часа. С помощью эхолота то же измерение можно произвести в несколько секунд, на полном ходу корабля, получая при этом результат, несравненно более надежный и точный. Ошибка в этих измерениях не превосходит четверти метра (для чего промежутки времени определяются с точностью до 3000-й доли секунды).

Если точное измерение больших глубин имеет важное значение для науки океанографии, то возможность быстро, надежно и точно определять глубину в мелких местах является существенным подспорьем в мореплавании, обеспечивая его безопасность: благодаря эхолоту судно может смело и быстрым ходом приближаться к берегу.

В современных эхолотах применяются не обычные звуки, а чрезвычайно интенсивные “ультразвуки”, неслышимые человеческим ухом, с частотой порядка нескольких миллионов колебаний в секунду. Такие звуки создаются колебаниями кварцевой пластинки (пьезокварца), помещенной в быстропеременное электрическое поле.

Жужжание насекомых

Почему насекомые часто издают жужжащие звуки? В большинстве случаев у них вовсе не имеется для этого никаких особых органов; жужжание, слышимое только при полете, обусловлено просто тем, что, летая, насекомые взмахивают крылышками несколько сотен раз в секунду. Крылышко — это колеблющаяся пластинка, а мы знаем, что всякая достаточно часто (чаще 16 раз в секунду) колеблющаяся пластинка порождает тон определенной высоты.

Перейти на страницу:

Похожие книги