Для тех из читателей, которых не пугает сжатый язык алгебраических выражений, приводим здесь эту поучительную формулу Эйлера:
Здесь
Попробуем применить эту формулу к тому случаю, который описан у Жюля Верна. Результат получится поразительный. Силой
Далее, величину
Подставив все эти значения в приведенную выше формулу Эйлера, получим уравнение:
Неизвестное
откуда:
Итак, великану Матифу, чтобы совершить свой подвиг, достаточно было тянуть канат с силою всего 24 фунтов!
Не думайте, что эта цифра – 24 фунта – только теоретическая и что на самом деле потребуется гораздо большее усилие. Напротив, у нас получился результат даже чересчур значительный: при
От чего зависит крепость узлов?
В обыденной жизни мы часто пользуемся той выгодой, на которую указывает нам формула Эйлера. Что такое, например, любой узел, как не бечевка, навитая на валик, роль которого в данном случае играет другая часть той же бечевки? Крепость всякого рода узлов – обыкновенных, «беседочных», «морских», – всякого рода завязок, бантов и т. п. зависит исключительно от трения, которое здесь усиливается во много раз вследствие того, что шнурок обвивается вокруг самого себя, как веревка вокруг тумбы. В этом не трудно убедиться, если проследить за изгибами шнурка в узле. Чем больше этих изгибов, чем больше раз бечевка обвивается вокруг самой себя – тем больше «угол навивания» в формуле Эйлера, а следовательно, тем крепче узел.
Бессознательно пользуется формулой Эйлера и портной, когда пришивает пуговицу. Он много раз обматывает нить вокруг захваченного стежком участка сукна и затем обрывает нить. За прочность шитья он может быть спокоен: если только нитка крепка, пуговица не отпорется. Здесь применяется уже знакомое нам правило: с увеличением числа оборотов нитки в арифметической прогрессии крепость шитья возрастает в геометрической прогрессии.
Если бы не было трения, мы не могли бы связать двух бечевок или завязать шнурки ботинок; не могли бы мы пользоваться и пуговицами: нитки размотались бы под их тяжестью, и наш костюм остался бы без единой пуговицы.
Глава третья
Вращательное движение. Центробежная сила
Почему не падает вращающийся волчок?