Читаем Занимательная физика (книга 2) полностью

Такой туннель, если бы его можно было прорыть, имел бы удивительное свойство, каким не обладает ни одна дорога в мире. Оно заключается в том, что любой экипаж в подобном туннеле должен двигаться сам собой. Вспомним наш подземный колодец, пробуравливающий земной шар. Ленинградо-московский туннель – тот же колодец, только просверленный не по диаметру, а по хорде. Правда, при взгляде на рис. 46 может казаться, что туннель прорыт горизонтально и что поезду, следовательно, нет причины катиться по нему в силу тяжести. Но это лишь обман зрения: проведите мысленно радиусы к концам туннеля (направление радиуса есть направление отвеса); вы поймете тогда, что туннель прорыт не под прямым углом к отвесу, т. е. не горизонтально, а наклонно.

Рисунок 46. Если бы прорыть туннель между Ленинградом и Москвой, то поезда мчались бы в нем туда и обратно под собственным весом, без паровозов.

В таком косом колодце всякое тело должно качаться, увлекаемое силою тяжести, вперед и назад, все время прижимаясь ко дну. Если в туннеле устроить рельсы, то железнодорожный вагон будет сам катиться по ним: вес заменит тягу паровоза. Вначале поезд будет двигаться очень медленно. С каждой секундой скорость самокатного поезда будет возрастать; вскоре она дойдет до невообразимой величины, так что воздух в туннеле будет уже заметно мешать его движению. Но забудем на время об этом досадном препятствии, мешающем осуществлению многих заманчивых проектов, и проследим за поездом дальше. Домчавшись до середины туннеля, поезд будет обладать такой огромной скоростью, – во много раз быстрее пушечного снаряда! – что с разбега докатится почти до противоположного конца туннеля. Если бы не трение, не было бы и этого «почти»: поезд без паровоза сам доехал бы из Ленинграда в Москву. Продолжительность перелета в один конец, как показывает расчет, – та же, что и для падения сквозь туннель, прорытый по диаметру: 42 минуты 12 секунд. Странным образом она не зависит от длины туннеля; путешествия в туннеле Москва – Лениград, Москва – Владивосток или Москва – Мельбурн продолжались бы одинаковое время[25].

То же повторялось бы с любым другим экипажем: дрезиной, каретой, автомобилем и т. д. Поистине сказочная дорога, которая, сама оставаясь неподвижной, мчит по себе все экипажи от одного конца до другого, и притом с невообразимой быстротой!

(Интересующиеся математической стороной этой задачи могут найти подробный разбор ее в моей статье, напечатанной в журнале «Математика и физика в школе», 1936, №3, стр. 106 – 107.)

Как роют туннели?

Взгляните на рис. 47, изображающий три способа проведения туннелей, и скажите, какой из них прорыт горизонтально?

Рисунок 47. Три способа прокладывать туннели сквозь горы.

Не верхний и не нижний, а средний, идущий по дуге, которая во всех точках образует прямые углы с направлением отвесных линий (или земных радиусов). Это и есть горизонтальный туннель, – его изгиб вполне соответствует кривизне земной поверхности.

Большие туннели прорывают обыкновенно так, как показано вверху: по прямым линиям, касательным к земной поверхности в крайних точках туннеля. Такой туннель сначала идет немного вверх, затем вниз. Он представляет то удобство, что вода не застаивается в нем, а сама стекает к краям.

Если бы туннель рылся строго горизонтально, то длинный туннель имел бы дугообразную форму. Вода не имела бы стремления вытекать из него, так как в каждой его точке находилась бы в равновесии. Когда такой туннель длиннее 15 км (Симплонский, например, имеет в длину 20 км), то, стоя у одного выхода, нельзя видеть другого: луч зрения упирается в потолок, так как средняя точка такого туннеля более чем на 4 м возвышается над его конечными точками.

Наконец, если прорыть туннель по прямой линии, соединяющей крайние точки, он будет с обоих концов иметь легкий наклон вниз к середине. Вода не только не будет вытекать из него, но, напротив, скопится в средней, самой низкой его части. Зато, стоя у одного конца такого туннеля, можно будет видеть другой. Прилагаемые рисунки поясняют сказанное[26].

Глава пятая. ПУТЕШЕСТВИЕ В ПУШЕЧНОМ СНАРЯДЕ.

В заключение наших бесед о законах движения и силе притяжения разберем то фантастическое путешествие на Луну, которое так занимательно описано Жюлем Верном в романах «С Земли на Луну» и «Вокруг Луны[27]». Вы, конечно, помните, что члены Пушечного клуба Балтиморы, обреченные на бездеятельность с окончанием Североамериканской войны, решили отлить исполинскую пушку, зарядить ее огромным полым снарядом и, посадив внутрь пассажиров, выстрелом отправить снаряд-вагон на Луну.

Фантастична ли эта мысль? И прежде всего: можно ли сообщить телу такую скорость, чтобы оно безвозвратно покинуло земную поверхность?

Ньютонова гора

Предоставим слово гениальному Ньютону, открывшему закон всемирного тяготения. В своих «Математических началах физики» он пишет (приводим это место ради облегчения понимания в вольном переводе):

Перейти на страницу:

Похожие книги