Как это ни странно, но люди только в XVII веке узнали, что на сетчатке их глаз существует «слепое пятно», о котором никто раньше не думал. Это то место сетчатой оболочки, где зрительный нерв вступает в глазное яблоко и еще не разделяется на мелкие разветвления, снабженные элементами, чувствительными к свету.
Мы не замечаем черной дыры в поле нашего зрения вследствие долговременной привычки. Воображение невольно заполняет этот пробел подробностями окружающего фона; так, на рис. 123 мы, не видя пятна, мысленно продолжаем линии окружностей и убеждены, будто ясно видим то место, в котором они пересекаются.
Если вы носите очки, то можете проделать такой опыт: наклейте кусочек бумаги на стекло очков (не в самой середине, а сбоку). В первые дни бумажка будет мешать смотреть; но пройдет неделя, другая, и вы так привыкнете к ней, что перестанете даже ее замечать. Впрочем, это хорошо знает каждый, кому приходилось носить очки с треснувшим стеклом: трещина замечается только в первые дни. Точно так же, в силу долговременной привычки, не замечаем мы слепого пятна нашего глаза. Кроме того, оба слепых пятна отвечают различным участкам поля зрения каждого глаза, так что при зрении двумя глазами не бывает пробела в их общем поле зрения.
Не думайте, что слепое пятно нашего поля зрения незначительно; когда вы cмoтpитe (одним глазом) на дом с расстояния 10 м, то, из за слепого пятна, не видите довольно обширной части его фасада, имеющей в поперечнике более метра, в нем умещается целое окно А на небе остается невидимым пространство, равное по площади 120 дискам полной Луны!
Рисунок 124. При рассматривании здания одним глаом небольшой участок С` поля зрения отвечающий слепому пятну (с) глаза нами не воспринимается вовсе.
Кстати – о видимых размерах Луны. Если вы станете расспрашивать знакомых, какой величины представляется им Луна, то получите самые разнообразные ответы. Большинство скажет, что Луна величиной с тарелку, но будут и такие, которым она кажется величиной с блюдце для варенья, с вишню, с яблоко. Одному школьнику Луна всегда казалась «величиной с круглый стол на двенадцать персон». А один беллетрист утверждает, что на небе была «Луна диаметром в аршин».
Откуда такая разница в представлениях о величине одного и того же предмета?
Она зависит от различия в оценке расстояния, – оценке всегда бессознательной. Человек, видящий Луну величиной с яблоко, представляет ее себе находящейся на расстоянии гораздо меньшем, нежели те люди, которым она кажется с тарелку или круглый стол.
Большинство людей, впрочем, представляет себе Луну величиной с тарелку. Отсюда можно сделать любопытный вывод: Если вычислить (способ расчета станет ясен из дальнейшего), на какое расстояние помещает каждый из нас Луну, имеющую такие видимые размеры, то окажется, что удаление не превышает 30 м[64]
. Вот на какое скромное расстояние отодвигаем мы бессознательно наше ночное светило!На ошибочной оценке расстояний основано не мало иллюзий зрения. Я хорошо помню оптический обман который испытал я в раннем детстве, «когда мне были новы все впечатленья бытия». Уроженец города, я однажды весной, во время загородной прогулки, в первый раз в жизни увидел пасущееся на лугу стадо коров, так как я неправильно оценил расстояние, коровы эти показались мне карликовыми! Таких крошечных коров я с тех пор ни разу не видел и, конечно, никогда не увижу[65]
.Видимый размер светил астрономы определяют величиной того угла, под которым мы их видим. «Угловой величиной», «углом зрения» называют угол, который составляют две прямые, проведенные к глазу от крайних точек рассматриваемого тела (рис. 125). Углы же, как известно, измеряются градусами, минутами и секундами. На вопрос о видимой величине лунного диска астроном не скажет, что диск равен яблоку или тарелке, а ответит, что он равен половине градуса; это значит, что прямые линии, проведенные от краев лунного диска к нашему глазу, составляют угол в полградуса. Такое определение видимых размеров есть единственно правильное, не порождающее недоразумений.
Рисунок 125. Что такое угол зрения.
Геометрия учит[66]
, что предмет, удаленный от глаза на расстояние, в 57 раз большее его поперечника, должен представляться наблюдателю под углом в 1 градус. Например, яблоко в 5 см диаметром будет иметь угловую величину в 1 градус, если его держать от глаза на расстоянии 5х57 см. На расстоянии вдвое большем оно представится под углом 0,5 градуса, т. е. такой же величины, какой мы видим Луну, Если угодно, вы можете сказать, что Луна кажется вам величиной с яблоко, – но при условии, что яблоко это удалено от глаза на 570 см (около 6 м). При желании сравнить видимую величину Луны с тарелкой вам придется отодвинуть тарелку метров на 30. Большинство людей не хочет верить, что Луна представляется такой маленькой; но попробуйте поместить гривенник на таком расстоянии от глаза, которое в 114 раз больше его диаметра: он как раз покроет Луну, хотя удален от глаза на два метра.