Незадействованные входы элемента КМОП нужно обязательно подключать куда-нибудь — либо к «земле», либо к питанию, либо объединять с соседним входом — иначе наводки на столь высокоомном входе полностью нарушат работу схемы. Причем в целях снижения потребления следует делать это и по отношению к входам незадействованных элементов в том же корпусе (но не вообще ко всем выводам.). «Голый» вход КМОП из-за своей высокоомности может быть также причиной повышенной «смертности» чипов при воздействии статического электричества, однако на практике входы всегда шунтируют диодами, как показано на рис. 6.5.
На рис. 8.2 показаны условные обозначения основных логических элементов на электрических схемах, причем нельзя не согласиться, что отечественные обозначения намного логичнее, легче запоминаются и проще выполняются графически, чем западные. Поэтому западные обозначения логических элементов у нас так и не прижились (как, кстати, и многие другие, например, обозначения резисторов и электролитических конденсаторов), и приведены здесь только для справки.
Рис. 8.2.
Крайний справа элемент под наименованием «Исключающее ИЛИ» нам еще неизвестен, но скоро мы его будем изучать. В табл. 8.1 приведена разводка выводов микросхем, содержащих логические элементы — она одинакова для всех трех наиболее употребляемых логических типов (напомним, что для серий ТТЛ и быстродействующей КМОП разводка будет другая). Естественно, все элементы из одного корпуса абсолютно идентичны и взаимозаменяемы, поэтому для таких микросхем номера выводов корпуса и расположение выводов питания на схеме обычно не указывают.
Подробности
Мы будем использовать в схемах и простые одновходовые инверторы — это микросхема 561ЛН2, содержащая 6 таких инверторов в одном корпусе DIP-14. Разводка выводов у нее такая (первая цифра — вход, вторая — выход): 1–2, 3–4, 5–6, 9–8, 11–10, 13–12, питание обычное, т. е. «+» к выводу 14, «земля» — к выводу 7. Отметим, что точного импортного аналога этой микросхемы не существует, есть микросхема CD4049 в корпусе DIP-16, у которой разводка несколько другая, идентичная микросхеме, содержащей 6 просто буферных усилителей без инверсии (561ПУ4 или CD4050): питание (внимание!) — к выводу 1, «земля» — к выводу 8, сами же элементы расположены так: 3–2, 5–4, 7–6, 9—10, 11–12, 14–15, выводы 13 и 16 не задействованы (и, напомним, не должны никуда присоединяться!).
Есть, разумеется, и элементы с большим числом входов, пример их использования мы увидим далее. Я не буду приводить здесь разводку выводов других типов логических микросхем, т. к. эти данные всегда можно найти в справочниках, например в [9]. Отдельно следует упомянуть, что многие микросхемы КМОП прекрасно коммутируют аналоговые сигналы, иногда даже специально делается отдельный вывод для подключения отрицательного напряжения питания, чтобы можно было пропускать двуполярное напряжение. Причем пропускание это осуществляется как в направлении от входа к выходу, так и обратно (таковы микросхемы 561КТЗ, КП1 и КП2 или, скажем, специально для этого предназначенные микросхемы серии 590KR*). Указанные микросхемы прекрасно работают также и с цифровыми сигналами, т. е. являются универсальными. Немного подробнее мы их рассмотрим далее.
Другой часто употребляемой разновидностью логических микросхем (в основном, правда, в составе больших интегральных схем, БИС) являются элементы, имеющие выход с открытым коллектором (или с открытым истоком). Такой выход, как мы помним, имеет компаратор 554САЗ (см.