Читаем Занимательная микроэлектроника полностью

Из описания устройства логических элементов (см. главу 8) ясно, что любой логический вентиль есть, в сущности, не что иное, как усилитель. Только, в отличие от операционного усилителя, логический вентиль, во-первых, не имеет дифференциального входа, а во-вторых, обладает невысоким коэффициентом усиления по напряжению (порядка нескольких десятков для КМОП-элемента). Тем не менее не будет большой ошибкой представлять логический инвертор компаратором, у которого на неинвертирующий вход раз и навсегда подан определенный потенциал, примерно равный половине напряжения питания. И если ввести стабилизирующую обратную связь, которая выводит такой элемент в линейную область, то он вполне способен работать в аналоговом режиме.


Релаксационные схемы


Реально, конечно, аналоговые сигналы обрабатывать на логике не имеет никакого смысла, но это свойство логических вентилей широко используется на практике для построения т. н. релаксационных схем, продуцирующих самопроизвольные колебания, отличающиеся по форме от гармонических (прямоугольные, импульсные, треугольные и т. д.). Такая схема характеризуется наличием одновременно положительной (ПОС) и отрицательной (ООС) обратных связей, причем теория гласит, что для получения устойчивых колебаний необходимо, чтобы действие ООС отставало от действия ПОС. Рассмотрим некоторые схемы такого рода.


Генераторы прямоугольных колебаний

Генератор прямоугольных колебаний называют еще мультивибратором. Существует много схем мультивибраторов, в том числе на цифровой логике (признаюсь, что мне даже невдомек, зачем в пособиях их обычно приводится так много, если они все равно делают в принципе одно и то же). Мы рассмотрим одну из них, выбранную с точки зрения минимального числа компонентов, и два ее варианта с управлением, разница между которыми заключается в используемых элементах.

Схема по рис. 9.1, а — базовая. При включении питания она начинает работать сразу и выдает меандр с размахом от 0 до Uпит. Частота на выходе определяется параметрами R1 и С1: период колебаний Т ~= 2R1C1. Резистор R2 в этом практически не участвует и нужен только для того, чтобы оградить защитные диоды микросхемы от перегрузки током разряда конденсатора С1. Величина его может изменяться от сотен ом до нескольких килоом. Величина же резистора R1 может изменяться от единиц килоом до 10 МОм, что позволяет избежать использования электролитических конденсаторов при малых частотах (напомним, что они очень нестабильны при работе во времязадающих цепях). Поэтому конденсатор С1 может применяться любой, с емкостью, начиная от нескольких десятков пикофарад, но только не электролитический. Практически указанные параметры элементов обеспечивают частоты от сотых долей герца до верхней границы рабочей частоты КМОП-микросхем в 1–2 МГц, а для быстродействующей КМОП-логики и выше, вплоть до 10 МГц и более.



Рис. 9.1.Схемы мультивибратора на логических элементах:

а — базовая схема на инверторах; б — схема на двухвходовых элементах с управлением; в — диаграмма состояний схемы на двухвходовых элементах «И-НЕ»; г — диаграмма состояний схемы на двухвходовых элементах «ИЛИ-НЕ»


Если в схеме рис. 9.1, б объединить входы логических элементов между собой, то она превратится в схему по рис. 9.1, а (чаще всего именно так базовую схему на практике и выполняют). Но нередко возникает задача остановить генерацию на время и при этом обеспечить совершенно определенный логический уровень на выходе генератора. Для этого предусматривают дополнительные входы. Диаграммы уровней на выходе в зависимости от состояния входов для разных типов логических элементов приведены на рис. 9.1, в и г.

Запоминать эти диаграммы нет необходимости, если обратиться к рис. 8.3, а. Из него следует, как описано в главе 8, что единица на входе «И-НЕ» и ноль на входе «ИЛИ-HE» являются разрешающими уровнями, следовательно, при этом наша схема будет функционировать как при объединении этих входов, т. е. подобно схеме на рис. 9.1, а. При запрещающих же уровнях на входе уровень на выходе будет устанавливаться так, как если бы никаких RC-цепочек не существовало.

Простейшие применения схемы с управлением — решение задачи приостановки генератора на время переходных процессов при включении питания, для чего к управляющему входу нужно подключить простейшую интегрирующую RC-цепочку. На рис. 9.2 показан другой вариант— схема звуковой сигнализации на микросхеме 561ЛA7 и одном транзисторе. Это пример случая, когда требуется определенный логический уровень при выключенной генерации, чтобы избежать протекания постоянного тока через динамик и не ставить при этом разделительный конденсатор.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника