Читаем Занимательная микроэлектроника полностью

На самом деле напряжение, до которого разряжается конденсатор, задается порогом компаратора и может в общем случае быть отличным от нуля на величину δ за счет «гуляния» порога, например, при изменении температуры. Но так как следующий цикл измерения начнется в точности с того же значения порога, то, как вы видите из графика 2, в данном случае имеет значение только изменение порога за время преобразования, которое обычно не превышает долей секунды. На результате не скажется и изменение емкости конденсатора (при тех же условиях), т. к. при этом наклон прямой и заряда и разряда изменится в одинаковой степени (график 3). В самых точных АЦП такого типа дополнительно проводят цикл «автокоррекции нуля», когда на вход подают нулевое напряжение и результат потом вычитают из значения кода, полученного в рабочем цикле. Мало того, здесь даже не требуется «кварцованная» частота и в теории всю схему можно «заводить» от любого RC-генератора— при условии, что время такта t2t1 и частота заполнения «ворот» для подсчета длительности результирующего интервала t3t2 задаются от одного и того же генератора.

Но чудес не бывает— точность и стабильность преобразования здесь полностью определяются точностью и стабильностью значения Uоп. Это общее условие для всех без исключения конструкций АЦП и ЦАП. Между прочим, обратите внимание, что Uвх и Uоп образуют в совокупности нечто вроде неинвертирующего и инвертирующего входа ОУ. Эта аналогия куда более полная, чем кажется, и манипулируя этими величинами, можно выделывать с выходным кодом всякие штуки, в частности, подгонять масштаб преобразования к нужному диапазону. Другое облегчение, которое можно получить от этой связи, заключается в возможности проведения относительных измерений, когда входное и опорное напряжения получаются от одного источника и тем самым имеют одинаковую относительную погрешность. Получается нечто вроде явления ослабления синфазного сигнала в ОУ. В идеале тогда мы получаем очень точные измерения, однако идеал этот, к сожалению, редко достижим на практике.

Кстати, в интегрирующих АЦП такого рода для более полного подавления помех нужно делать первую часть цикла интегрирования именно кратным периоду помехи. Тогда в цикле укладывается целое число периодов помехи и она усредняется. Практически наибольшее влияние оказывает сетевая помеха частотой 50 Гц, поэтому частоту циклов стараются делать в «круглых» числах.

Простой вариант практической схемы АЦП двойного интегрирования (преобразователь напряжение — время) приведен на рис. 10.6. Счетная часть на схеме не показана. Для понимания того, как работает схема, следует обратить внимание, что управляющий вход у ключей типа 590КН2 (D1) инверсный, т. е. при низком уровне на управляющем входе ключ открыт, при высоком — заперт.



Рис. 10.6.Простой вариант АЦП двойного интегрирования (ПНВ)


Рассмотрим диаграмму работы (рис. 10.6, справа). В момент отрицательного перепада на тактовом входе Т, RS-триггер устанавливается в единицу по выходу Q. Так как на входе Т в этот момент отрицательный уровень, ключ D1/1 открывается, остальные ключи заперты. Конденсатор подключается в обратную связь верхнего ОУ (DA1/1) и начинается цикл интегрирования входного напряжения (напряжение на конденсаторе возрастает по абсолютной величине, т. е. на выходе DA1/1 падает, т. к. интегратор инвертирующий). В момент окончания отрицательного полупериода тактовой частоты ключ D1/1 запирается, а D1/3 открывается, заряженный конденсатор оказывается подключенным в обратную связь второго ОУ (DA1/2).

Начинается цикл интегрирования опорного напряжения (изменение напряжения на конденсаторе показано на диаграмме пунктирной линией). Так как обратная связь в первом ОУ теперь отсутствует, то он сработает, как компаратор: сначала на его выходе установится напряжение, равное отрицательному питанию (или близкое к нему), а в момент равенства напряжения на конденсаторе нулю выход резко устремится от отрицательного к положительному питанию (но его ограничит на уровне примерно +0,6 В диод, включенный в обратную связь, который нужен для того, чтобы не затягивать переходной процесс). Положительный перепад передастся на обнуляющий вход RS-триггера и установит его выход Q в состояние логического нуля. При этом откроется ключ D1/2 и закоротит конденсатор, прерывая таким образом процесс интегрирования. На входе верхнего ОУ установится напряжение, равное нулю, а на выходе, вообще говоря, т. к. обратная связь по-прежнему отсутствует, оно станет неопределенным (на диаграмме оно показано условно в виде нулевого уровня). Это состояние длится до конца периода тактовой частоты, а с отрицательным перепадом на входе Т ключи Dl/З и D1/2 закроются и все начнется сначала. На выходе схемы возникает положительный импульс напряжения, длительность которого t- t2 пропорциональна входному напряжению, согласно соотношению:

(t- t2)/(t- t1) = Uвх/Uоп

где промежуток времени t- t1 жестко задан внешним тактовым генератором.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника