У меня «под рукой» оказалось реле типа РЭС-60 с обмоткой 800±120 0 м (пасп. РС4.569.435-01). Изменения на диапазон 200° составят примерно 640 Ом (исходя из ТКС меди, равного примерно 0,4 %/град). Выберем
Общая схема термометра показана на рис. 10.8.
Рис. 10.8.
Рассмотрим сначала включение датчика. Для того чтобы при нуле градусов термометр показывал «0», нужно на вход АЦП подавать разность текущего напряжения на датчике и значения его при нулевой температуре. В данном случае это делается с помощью мостовой схемы.
Конструкция на сдвоенном ОУ МАХ478 представляет собой два идентичных источника тока 0,8 мА. Оба ОУ DA1, полевые транзисторы VT1 и VT2 и резисторы R16—R19 образуют верхнюю половину моста, а нижняя состоит из датчика температуры Rt и опорного резистора R20, сопротивление которого должно быть равно сопротивлению датчика при 0 °C (~740 Ом, точное значение подбирается при калибровке, для удобства предусмотрен параллельный резистор). Разность этих напряжений подается на АЦП в качестве входного напряжения. Фильтр R22, С6 нужен для лучшего сглаживания помех (конденсатор С6 может быть керамическим).
Обратим теперь внимание на хитрую схему включения самого датчика, которая носит название «трехпроводной» и позволяет избежать влияния соединительных проводов и, главное, помех, которые наводятся на них. Сами по себе провода влияют слабо, т. к. в данном случае достаточно, чтобы они имели сопротивление, меньшее, чем 1/2000 сопротивления датчика, что составляет примерно 0,4 Ом (это даже слишком жесткое требование, т. к. не само сопротивление подводящих проводов вносит погрешность, а только его температурные изменения). Это вполне обеспечит провод МГТФ-0,35, если его суммарная длина не превысит 40 м.
Однако в трехпроводной схеме и столь малые изменения нивелируются тем, что два одинаковых провода, соединяющие опорный резистор с датчиком и датчик с источником тока, оказываются включенными в разные плечи моста, потому их изменения взаимно компенсируются. Наведенные на этих проводах помехи ведут себя точно так же. А третий провод, соединяющий датчик с «землей», оказывается включенным в оба плеча сразу, и создает чисто синфазную помеху. Дополнительный резистор R23, включенный в этот провод, «подтягивает» напряжение разбаланса моста к середине напряжения питания (падение напряжения на R23 составляет около 1 В). При возможном изменении напряжения питания опорное напряжение и сигнал с выхода моста будут меняться пропорционально, поэтому ошибки не возникнет.
Все резисторы, выделенные на схеме темным, должны иметь точность не хуже 1 %, (например, С2-29В). Номиналы их, естественно, необязательно должны быть именно такими, как указано на схеме, и могут меняться в очень широких пределах, но соотношения должны быть выдержаны точно. При ином сопротивлении датчика соотношения этих резисторов, а также сопротивления резисторов R20 и R23 придется пересчитать, при этом желательно приблизительно сохранить значения напряжений в схеме, особенно это касается близости к середине напряжения питания.
Питание индикаторов в этой схеме обязательно должно осуществляться от отдельной обмотки трансформатора. Индикаторы зеленого свечения (с буквой G) можно заменить на любые другие, по вкусу, однако индикаторы больших размеров, чем указаны на схеме (с цифрой высотой более 0,5 дюйма), придется подключать через дополнительные ключи с повышенным напряжением питания. Так как мы четвертый разряд не используем, то не имеет смысла ставить целый индикатор для одного только знака минус, и его индикация производится с помощью одного плоского светодиода. Они бывают разных размеров, и чтобы схема выглядела красиво, следует подогнать светящуюся полоску по ширине сегментов индикатора. В данном случае светодиод L113 имеет размеры 5x2 мм, но сегменты заметно уже, поэтому часть торцевой поверхности нужно аккуратно закрасить любой непрозрачной краской. Залить такой краской следует и боковые поверхности светодиода, иначе вместо минуса вы получите неопределенное светящееся пятно.
Если яркость «минуса», запятой (вывод