При наличии реактивной нагрузки в цепи переменного тока полезная мощность (в нагрузке) может отличаться от величины произведения потребляемого тока на напряжение — она всегда меньше. Поэтому иногда различают мощность, выраженную в вольт-амперах (ВА), и мощность в ваттах (Вт), а отношение их называют коэффициентом мощности. Другое его общепринятое название — «косинус фи», потому что коэффициент мощности есть не что иное, как cos(φ), где φ — угол фазового сдвига тока относительно напряжения. При постоянном токе, а также в случае чисто активной нагрузки угол этот равен нулю, поэтому косинус равен единице. В другом предельном случае, когда нагрузка чисто реактивная, косинус равен нулю. В реальных цепях с электродвигателями или, скажем, мощными вторичными импульсными источниками питания (офис с большим количеством компьютеров) в качестве потребителей, коэффициент мощности может лежать в пределах 0,6–0,9. Следует подчеркнуть, что коэффициент мощности — это не КПД, как можно себе вообразить. Разница между вольт-амперами и ваттами никуда не теряется в физическом смысле, она всего лишь приводит к таким неприятным последствиям, как увеличение потерь в проводах, о котором мы упоминали (оно пропорционально именно вольт-амперам), а также возникновению разбаланса между фазами трехфазной промышленной сети, в результате чего через нулевой, обычно более тонкий, чем все остальные, провод начинают протекать значительные токи.
Дифференцирующие и интегрирующие цепи
Если подать на вход цепи, состоящей из резистора R и конденсатора С, прямоугольный импульс напряжения, то результат будет различным в зависимости от включения R и С. Переходные процессы в таких цепях подчиняются основным закономерностям, представленным на рис. 2.9, но имеют и свою специфику. На рис. 2.10 показаны два способа включения RC-цепочки в цепь с прямоугольными импульсами на входе (здесь они не такие, как на рис. 2.5, б, а однополярные, т. е. напряжение меняется по величине, но остается выше уровня «земли»). Такое включение называется дифференцирующей цепочкой или фильтром высоких частот (ФНЧ), потому что данная цепь пропускает высокочастотные составляющие, полностью отрезая постоянный ток. Чем больше постоянная времени RC в этой схеме, тем ниже частота, которая может быть пропущена без изменений, — в пределе импульсы пройдут почти неизмененными. Наоборот, если постоянную времени уменьшать, то пики на графике будут все больше утончаться. Этим эффектом часто пользуются для выделения фронтов и спадов прямоугольных импульсов.
Рис. 2.10. Дифференцирующие цепочки:
а — при подключении резистора к нулевому потенциалу; б — к потенциалу источника питания
Так как через конденсатор постоянная составляющая напряжения не проходит, то полученные импульсы «привязаны» к выходному потенциалу схемы — в зависимости от того, куда подключен резистор. На графиках рис. 2.10 резистор подключен либо к «земле» (а), либо к источнику питания (б), потому и для выходного напряжения базовым будет либо нулевой потенциал, либо потенциал источника (при этом амплитуда импульсов будет такой, как у входного напряжения). Этим широко пользуются при необходимости умножения напряжения (обратите внимание, что на рис. 2.10, б амплитуда положительного выходного импульса в два раза выше напряжения питания), или для формирования двуполярного напряжения из имеющегося однополярного. Иногда этот эффект вреден: подачей отрицательного или превышающего потенциал источника питания напряжения можно вывести из строя компоненты схемы.
А интегрирующая цепочка (фильтр нижних частот, ФВЧ) получается из схем рис. 2.10, если в них R и С поменять местами. График выходного напряжения будет соответствовать показанному на рис. 2.11. Такие цепочки, наоборот, пропускают постоянную составляющую, в то время как высокие частоты будут отрезаться.
Рис. 2.11.Интегрирующая цепочка и график ее выходного напряжения, построенный в одном масштабе с входным
Если в такой цепочке увеличивать постоянную времени RС, то график будет становиться все более плоским — в пределе пройдет только постоянная составляющая (которая здесь равна среднему значению исходного напряжения, т. е. ровно половине его амплитуды). Этим широко пользуются при конструировании вторичных источников питания, в которых нужно отфильтровать переменную составляющую сетевого напряжения. Интегрирующими свойствами обладает также обычный кабель из пары проводов, о котором мы упоминали ранее, потому-то и теряются высокие частоты при прохождении сигнала через него.
Сигналы