Читаем Занимательная микроэлектроника полностью

Подробности

Давайте попробуем рассчитать для простейшей параметрической схемы (рис. 4.5, а) т. н. коэффициент стабилизации: отношение изменения входного напряжения (в %) к изменению выходного (также в %). Для этого надо посмотреть в справочнике величину дифференциального сопротивления стабилитрона: для указанного КС156А — 46 Ом. Это означает, что при изменении тока через него на 1 мА изменение напряжения стабилизации составит 46 мВ. Теперь предположим, что входное напряжение изменяется на 1 В (8,3 %), тогда изменение тока будет равно 1 В/200 Ом = 5 мА, отсюда изменение выходного напряжения будет 46 — 5 = 230 мВ или 4,6 %. Коэффициент стабилизации тогда будет равен 8,3/4,3 ~= 2. Конечно, это очень маленькая величина, потому простейшие параметрические стабилизаторы ставят только в редких случаях, когда входное напряжение дополнительно стабилизировано заранее.

Выходное сопротивление простейшего стабилизатора очень велико, поэтому выходное напряжение будет «гулять» независимо от входного при изменении тока нагрузки, от которого напрямую зависит ток через стабилитрон. Другое дело — схема на рис. 4.5. б, в которой ток через стабилитрон изменяется на величину β транзистора меньшую, чем ток в нагрузке. Статический коэффициент передачи тока для транзистора КТ815А равен (по справочнику) 40, поэтому при изменении тока нагрузки на 1 мА, ток через стабилитрон изменится всего на 0,025 мА, а напряжение стабилизации, соответственно, всего на 1,15 мВ, а не на 46 мВ, как ранее. Теоретический коэффициент стабилизации этой схемы по входному напряжению равен приблизительно 70. На практике стабилизирующие свойства данной схемы оказываются несколько хуже, т. к. следует учитывать нестабильность падения напряжения «база-эмиттер» транзистора.

При этом надо учитывать ограничения, накладываемые минимальным током через стабилитрон (5 мА для КС156А) и его максимальной допустимой мощностью (300 мВт). При выходном токе 1 А базовый ток транзистора должен составить не менее 25 мА, поэтому общий ток через резистор Rст не может быть меньше 30 мА (что и дает значение 200 Ом при минимальной разности напряжений «вход-выход» ~6 В). Максимально возможный выходной ток в такой схеме ~2 А, потому что минимальное значение Rст = 100 Ом. При отсутствии нагрузки ток через стабилитрон составит тогда 60 мА, а выделяющаяся на нем мощность при напряжении стабилизации ~5 В как раз и составит 0,3 Вт.

Да, кстати, а какая мощность выделится на «проходном» транзисторе VT1? Не такая уж и маленькая: при выходном токе 1 А она составит (12 В — 5 В)∙1 А = целых 7 Вт! Значит, транзистор явно придется ставить на радиатор. Отсюда виден главный недостаток подобных аналоговых стабилизаторов — низкий КПД. В данном случае он всего около сорока процентов (проверьте!), остальное рассеивается в пространстве. Мы можем его несколько повысить, снижая входное напряжение, но только до определенного предела. Здесь этот предел равен примерно 8 В, иначе эта схема не справится. Помните, однако, что 8 В — это действительно нижний предел, а не среднее значение пульсирующего напряжения на выходе конденсатора фильтра, которое показывает вольтметр (если вы еще раз взглянете на рис. 4.3, то поймете о чем я). Иначе стабилизатор просто перестанет стабилизировать. Потому всегда следует иметь запас, и не маленький.

Заменой n-р-n-транзистора на р-n-р с соответствующей сменой всех полярностей (в том числе «переворотом» конденсаторов и стабилитрона) на обратные, мы получим стабилизатор отрицательного напряжения. На практике, однако, такие стабилизаторы давно уже не применяют. Гораздо более высокий коэффициент стабилизации, как по входному напряжению, так и по изменению тока нагрузки, дают интегральные стабилизаторы, которые к тому же гораздо проще в обращении.

Интегральные стабилизаторы
Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника