Заметки на полях
Кстати, выход годных — одна из причин того, что кристаллы микросхем такие маленькие. В некоторых случаях разработчики даже рады были бы увеличить размеры, но тогда резко снижается и выход. Типичный пример — многолетняя борьба производителей цифровых фотоаппаратов за увеличение размера светочувствительной матрицы. Если бы удалось наладить массовый выпуск матриц размером с пленочный кадр (24x36 мм), то это одним махом решило бы множество проблем, но на момент написания этой книги только самые лучшие (и наиболее дорогие) любительские камеры имеют такие матрицы.
Еще одна особенность микросхем — высокая надежность. Дискретный аналог устройства типа аналого-цифрового преобразователя содержал бы столько паек, что какая-нибудь в конце концов обязательно вышла бы из строя. Между тем, если вы эксплуатируете микросхему в штатном режиме, то вероятность ее выхода из строя измеряется миллионными долями процента. Это настолько редкое явление, что его можно вообще не учитывать на практике. Если у вас сломался какой-то электронный прибор, ищите причину в контактах переключателей, в пайках внешних выводов, в заделке проводов в разъемах, но про возможность выхода из строя микросхемы забудьте. Разумеется, это, повторяю, относится к случаю эксплуатации в штатном режиме, если вы подали на микрофонный вход звуковой карты напряжение 220 В, то конечно, в первую очередь пострадает именно микросхема. Но сами по себе они практически не выходят из строя никогда.
Наконец, для схемотехников микросхемы обладают еще одним бесценным свойством: все компоненты в них изготавливаются в едином технологическом процессе и находятся в строго одинаковых температурных условиях. Это совершенно недостижимо для дискретных приборов — например, пары транзисторов, для которых желательно иметь идентичные характеристики, ранее приходилось подбирать вручную (такие уже подобранные пары специально выпускались промышленно) и иногда даже ставить их на медную пластину, чтобы обеспечить одинаковый температурный режим.
Рассмотрим типичный пример — так называемое токовое зеркало (рис. 6.3). Эта схема работает следующим образом. Левый по схеме транзистор представляет собой фактически диод, т. к. у него коллектор соединен с базой.
Рис. 6.3.
Из характеристики диода (см. рис. 3.1) видно, что при изменении прямого тока на нем несколько меняется и напряжение (оно не равно точно 0,6 В). Это напряжение без изменений передается на базу второго, ведомого транзистора, в результате чего он выдает точно такой же ток — но только при условии, если характеристики транзисторов согласованы с высокой степенью точности. Мало того, это соответствие должно сохраняться во всем диапазоне рабочих температур! Естественно, столь высокая идентичность характеристик практически недостижима для дискретных приборов, а для транзисторов, входящих в состав микросхемы, она получается сама по себе, без дополнительных усилий со стороны разработчиков.
Подробности
Схемы подобных токовых зеркал получили широкое распространение в интегральных операционных усилителях в качестве нагрузки входного дифференциального каскада, что значительно лучше простых резисторов. Их применение вместо резисторов гарантирует повторяемость характеристик ОУ в широком диапазоне питающих напряжений. Отметим также, что ведомых транзисторов может быть много (на рис. 6.3 второй такой транзистор показан серым цветом), их число ограничивается только тем обстоятельством, что базовые токи вносят погрешность в работу схемы, отбирая часть входного тока на себя. Впрочем, и с этим можно успешно бороться.