Дублинский математик Корнелий Ланцош пишет: «Гаусс чем-то напоминал легендарного греческого царя Мидаса. Царь Мидас обращал в золото все, к чему прикасался. Многие открытия Гаусса берут свое начало от некоторых случайных вопросов, которые перед ним ставились. И хотя сами по себе эти вопросы были зачастую досадной нагрузкой, но, когда Гаусс брался за них с характерными для него тщательностью и аккуратностью, он создавал нечто исключительно важное».
Математика, астрономия, геодезия, физика — во всех этих отраслях науки Гаусс, начиная с небольшого частного вопроса, заканчивал тем, что блестяще решал фундаментальные задачи, продвигая науку дальше и дальше. Нет, не зря современники называли его первым математиком мира.
В 1820 году Гаусс получает указание от министра общественных дел Ганноверского княжества возглавить геодезическую съемку государства и составить подробную карту для межевания и точного определения границ земельных владений. «Гаусс отнюдь не пришел в восторг от своих новых обязанностей». Но он разработал специальный прибор — гелиотроп — для усовершенствования оптической сигнализации; изобрел новый способ наименьших квадратов для установления длин, координат, дуг и других величин в астрономии и геодезии. Заинтересовавшись формой земной поверхности, он занялся углублением общего метода исследования кривых поверхностей. И в конце концов, открыв в геометрии целое новое направление, создал математический аппарат, без которого не смогла бы возникнуть общая теория относительности. Потому что именно геометрические методы Гаусса явились отправной точкой в размышлениях Эйнштейна об общих системах отсчета.
А так как общая теория относительности — хлеб насущный современной космологии, то терпеливый читатель понимает необходимость ознакомиться с геометрическим открытием Гаусса поподробнее.
Занимаясь проблемой измерения кривых поверхностей, Гаусс первым попробовал рассмотреть их «внутренние», или «собственные», свойства, зависящие только от самих искривленных поверхностей. Он как бы попробовал проникнуть в психологию плоского двухмерного существа, живущего на такой поверхности. Этот новый, совершенно необычный взгляд означал фактически создание новой, «внутренней геометрии» поверхностей.
Основными элементами геометрии всегда являлись прямые линии и углы. Без них геометрию не построишь, как не придумаешь правил правописания без букв. Но можно ли говорить о существовании прямых линий, например, на искривленной плоскости? Конечно, нет! — скажет поверхностный читатель. А глубокомыслящий задумается. Но давайте спросим у самого обитателя расплющенного мира. Ведь мы договорились, что на искривленной поверхности живут плоские, как вырезанные из полиэтиленовой пленки, существа. Итак.
М-да, против этого, пожалуй, не возразишь. Разве не так же мы, обитатели сферической (то есть искривленной) земной поверхности, строим «прямые как стрела» дороги и определяем кратчайшие расстояния между двумя городами? Ну, а коли есть прямые линии на искривленной поверхности, то есть и углы, треугольники, окружности, эллипсы…
Короче говоря, обитатели кривого плоского мира вправе ожидать от своего «расплющенного Эвклида» построения науки, которая ничуть не хуже планиметрии.
Теперь представим себе, что эта искривленная поверхность замыкается в шар. Ее обитатели, если они достаточно малы по сравнению с радиусом шара, просто не замечают кривизны. Кстати, «кривизна» чрезвычайно важное геометрическое понятие. Кривизной называют величину, как раз обратную радиусу закругления поверхности в рассматриваемой точке. У шара кривизна во всех точках одинакова. После такого открытия грешно не попытаться в лучших традициях древних греков соорудить аксиому со стандартным началом, «Очевидно, что чем больше радиус, тем меньше кривизна!» Прекрасно!
Теперь вернемся к нашим «расплющенным» мыслителям, живущим на поверхности здоровенного шара, но не знающим этого. Их геометрия ничем не отличается от эвклидовой. Точно так же они станут утверждать, что прямые линии бесконечны, треугольники подобны, а параллельные никогда не пересекаются.
И вот приходим в этот плоский мир мы с вами. Нам тоже пришлось расплющиться. Вы не возражаете? Но все равно и в этом непривычном состоянии мы с вами гиганты мысли. Мы строим на поверхности шара, которую тамошние интеллектуалы именуют плоскостью, треугольник. И предлагаем измерить сумму его углов. Плоскуны-геометры меряют — вроде 180°. В пределах ошибки. Тогда мы растаскиваем, растягиваем стороны треугольника на полмира, в смысле на полшара. Плоскуны снова измеряют и обнаруживают… Ну мы-то, конечно, с самого начала знали, что сумма углов в криволинейном треугольнике не равна 180°, и потому не удивляемся этому результату.