Но предполагал ли сам Лобачевский, что его «воображаемая геометрия» не просто логически непротиворечива, но действительно более правильно описывает пространство окружающего мира? Да! Тысячу раз да! Николай Иванович был убежден, что люди не могут навязывать природе законы геометрии. И потому он отрицал взгляды Канта. Как и Гаусс, Лобачевский пытался на практике измерять сумму углов треугольника. Он понимал, что истинность его геометрии для реального пространства может быть доказана лишь при измерениях очень больших расстояний. И Лобачевский строит треугольник с вершинами на Земле, Солнце и Сириусе и, пользуясь известными в его время астрономическими данными параллаксов звезд, пытается вычислить сумму его углов.
Увы, точность угломерных инструментов в его время была недостаточной, а следовательно, и значения параллаксов — приближенными. Рассчитанное отклонение суммы углов от 180° лежало в пределах ошибки измерений. Но отрицательный результат не обескуражил великого геометра. Он понимал, что неудача связана с несовершенством приборов и с тем, что выбранный треугольник был еще слишком мал…
За год до своей смерти слепой Лобачевский продиктовал по-французски свое последнее сочинение «Пангеометрию». Эвклидова геометрия не отрицалась «воображаемой геометрией», она просто являлась ее наиболее простым частным, или, если угодно, предельным случаем, когда гауссова кривизна (она отрицательная в гиперболической геометрии Лобачевского) становится равной нулю.
История последовательного расширения геометрии, идущая от пятого постулата Эвклида до геометрии Лобачевского и Больяи и дальше к Риману и Эйнштейну, является серьезным предостережением тем, кто, занимаясь вопросами космологии, слишком легко экстраполирует то, что он знает о «здесь» и «сейчас», на то, что лежит и происходит «там» и «тогда». Вряд ли стоит, изучив геометрию собственной комнаты, экстраполировать ее выводы на всю вселенную вообще.
И все-таки Лобачевский до конца жизни не был удовлетворен результатами своей работы. Его мучило сознание ее незавершенности, отсутствие доказательства того, что «воображаемая геометрия» принципиально не может привести к абсурду. То есть он-то не сомневался в ее правильности, но вот окружающие… Ах, если бы ему, начертив воображаемые линии и фигуры, написать на чертеже одно-единственное слово: «Смотри!» Когда-то в древности это слово, поставленное на чертеже, заменяло доказательство… Увы, подобного «абсолютного доказательства» Николай Иванович так и не нашел.
В 1868 году, всего 12 лет спустя после смерти великого русского геометра, итальянский математик Эудженио Бельтрами опубликовал скромный мемуар «Опыт интерпретации неэвклидовой геометрии». Мемуар, который грохотом своего взрыва (его сравнивали с бомбой) разметал всех скептиков, всех тех, кто не верил в «воображаемую геометрию» Лобачевского. Мемуар, которого так недоставало при жизни Николая Ивановича…
Профессор математики Бельтрами некоторое время занимался картографией, для чего изучал способы отображения искривленной поверхности Земли на плоском листе бумаги. При этом ему пришлось столкнуться с весьма малоизученным вопросом о поверхности постоянной отрицательной кривизны — сферы наоборот, или псевдосферы. Когда-то, в конце прошедшего XVII столетия, о «мнимой сфере» говорил и писал Иоганн Ламберт — математик, физик, астроном и философ, со взглядами которого мы уже знакомы. Однако вряд ли Бельтрами знал о работах Ламберта. Рассмотрев большой класс поверхностей с постоянной отрицательной кривизной, Бельтрами умудрился построить их. Любознательный читатель может увидеть разновидность такой поверхности на нашем рисунке. Она похожа на седло. Самым же замечательным оказалось то, что геометрия на таких поверхностях была геометрией Лобачевского!
Вот когда пришло прозрение для всех неверующих. Вот когда Бельтрами смог воскликнуть столь желанное «смотри» и указать на чертеж. Псевдосфера-поверхность, находящаяся в привычном эвклидовом пространстве, являлась пресловутой «воображаемой» плоскостью Лобачевского. Но если такая плоскость (или двухмерное пространство) существует, то и ее геометрия не может быть ложной.
Мемуар Бельтрами совершил настоящий переворот. Имя Лобачевского озарилось сиянием славы. Увы, посмертно.
К сожалению, нарисовать или представить наглядно трехмерное пространство, подчиняющееся аксиомам геометрии Лобачевского, невозможно. У автора не хватает фантазии даже на аналогии. А отсутствие таковых в специальной литературе не позволяет прибегнуть к заимствованию. Придется воспользоваться единственным выходом — логикой…
Двухмерное пространство нулевой кривизны — плоскость. Та же нулевая величина кривизны определяет и эвклидово пространство, отличающееся от плоскости лишь наличием еще одного измерения.
Двухмерное пространство отрицательной кривизны — плоскость Лобачевского. Та же отрицательная величина кривизны определяет и неэвклидово пространство Лобачевского, отличающееся от плоскости Лобачевского лишь наличием еще одного измерения.