Кроме того, ракетная астрономия не ограничивает себя объемом информации, получаемой уже известными нам способами, то есть информацией, полученной в диапазонах спектра: в видимых лучах, в инфракрасном излучении и радиоволнах. Выход за атмосферу открывает вторую половину спектра электромагнитных колебаний: ультрафиолетовое излучение, рентгеновское, наконец, гамма-лучи.
В 1962 году в космосе был обнаружен первый таинственный источник рентгеновского излучения: не звезда и не туманность. Источник ни на что известное не был похож. А сегодня их открыли уже более десятка.
Недавно пришла первая победа — в июне 1966 года самый мощный из этих таинственных «нечто» из созвездия Скорпиона удалось отождествить с быстро меняющейся звездой тринадцатой величины. Не исключено, что это остаток вспышки неизвестной звезды — «Новой», как обычно их называют. Утверждение не вполне достоверное, однако позволяющее сделать вывод о развитии совсем нового раздела древней науки —
Из космоса к нам приходят два типа излучения: нейтральные частицы — фотоны и нейтрино, и частицы, электрически заряженные, — электроны, протоны и т. д. Путь заряженных частиц сложен, они движутся по спиралям, навиваясь на силовые линии магнитных полей в Галактике. Поэтому определить их источник чрезвычайно трудно. Другое дело — нейтрино с колоссальной проникающей способностью. По траекториям движения можно будет проследить место их возникновения — так сказать, «родильный дом» материи. А это значит отыскать главный механизм вселенной.
Источник нейтрино — бурлящее плотное ядро звезды. Свет тоже рождается в ядре в виде высокоэнергичных квантов рентгеновского излучения. Но пока он проберется сквозь неимоверную толщу светила, мало того, что растеряет часть своей энергии, главное — пройдут миллионы лет. А шустрые нейтрино, едва появившись, сразу проскакивают всю глубину звезды, будто это пустынный тракт. В окуляре нейтринного телескопа наше Солнце казалось бы не диском, а крошечной огненной точкой. Спектры нейтрино снабдили бы астрономов сведениями о реакциях в самом центре Солнца из первых рук. Астрономы-экспериментаторы получили бы возможность проникнуть в недра звезд.
Это было бы интересное зрелище. Наблюдатели стали бы смотреть на Солнце не только тогда, когда оно стоит в зените, а когда между дневным светилом и наблюдателем — все тело матери Земли. Это избавило бы исследователей от посторонних помех, так как для нейтрино Земля — ничто!
К сожалению, поймать нейтрино пока почти не удается. И жадным физикам и алчным астрономам остается мечтать. Но они упрямы — эти физики с астрономами. И пока суд да дело, допрашивают фотоны, разгадывая древние тайны вселенной. И вот что из этого получается. Только сначала договоримся, что считать фотоном.
Примерно с десятого класса мы знаем о дуализме элементарных частиц — свойстве представать перед нами то в облике частицы-корпускулы, то в виде волны. Путь к объяснению этого феномена с позиций здравого смысла изрядно усеян терниями. Поэтому давайте просто примем к сведению, что «частицы суть волны». Это становится особенно ясно после того, как вы твердо усвоили, что «волны суть частицы».
А теперь, поняв главное, переведем длины волн спектра электромагнитных колебаний в энергии квантов (в энергии фотонов). Так мы получим их целый зверинец.
Фотоны очень высоких энергий (например, гамма-лучи, соответствующие энергиям 10 12электрон-вольт и выше) не должны нас интересовать вообще. Они слишком энергичны.
По подсчетам астрофизиков, предельное расстояние для путешествующих гамма-квантов с энергией 10 12электрон-вольт не превышает… миллиарда световых лет. В масштабах звездного мира это загородная прогулка.
Гамма же лучи более низких энергий без особых хлопот пролетают все 13 миллиардов световых лет, отделяющих солнечную систему от видимого «края» вселенной. И каждый такой путешественник-фотон — кладезь премудрости. Только сумей его расспросить, выпытать у него.
Не кажется ли вам, что мы стоим у колыбели еще одного астрономического «ребенка» —
Так мы с вами рассмотрели некоторые вопросы не только истории науки о звездах, но и самой астрономии. Познакомились (шапочно, только шапочно, как и предупреждал автор) с ее основными разделами, инструментами и даже некоторыми методами, поскольку иногда именно метод бывал виновен в возникновении раздела и настойчиво требовал специальных инструментов.