Читаем Занимательно об астрономии полностью

Прошло восемнадцать лет. Испытывая новый телескоп, американский оптик Альван Кларк углядел-таки слабую звездочку рядом с Сириусом. Это был Щенок. Масса его, по расчетам, должна была быть примерно равна солнечной. Правда, не очень было ясно, почему он так Слабо светится? Сначала предположили, что холоден и потому тускл. Но в 1914 году астроном Адамс, исследуя спектр Щенка, обнаружил, что тот угрожающе похож на спектр самого Сириуса. А значит, и температура и блеск спутника не должны уступать этим параметрам основной звезды, то есть быть выше солнечных. И действительно, скоро выяснилось, что температура на поверхности окаянного Щенка не меньше 8 тысяч градусов. Но тогда почему он так слабо светится?

Так возникла неувязка с его величеством спектральным анализом. Астрономы ломали себе головы над загадкой. Вот как вспоминает об этом периоде президент Королевского астрономического общества в Лондоне Артур Стэнли Эддингтон:

«Сообщение спутника Сириуса после его расшифровки гласило: „Я состою из вещества, плотность которого в 3 тысячи раз выше всего, с чем вам когда-либо приходилось иметь дело. Тонна моего вещества — это маленький кусочек, который помещается в спичечной коробке“».

Что можно оказать в ответ на такое послание? В 1914 году большинство из нас ответило бы так: «Полно! Не болтай глупостей!»

Понадобилось десять лет, чтобы астрономы окончательно убедились в том, что открыт новый класс сверхплотных звезд — белых карликов. Щенок Сириуса научил людей находить во вселенной тела, недоступные непосредственному наблюдению; раскрыл астрономам «глаза разума», подарив человечеству триумфальный праздник «гравитационной астрономии» Ньютона.

После Сириуса невидимый спутник был обнаружен у звезды 61-й Лебедя. О нем сегодня тоже многое известно. И масса, и период обращения, и расстояние до центральной звезды. И тем не менее его тоже никто не видел. У одной из ближайших к Солнцу звезд — звезды Барнарда — предполагается темный спутник всего в полтора раза массивнее Юпитера.

Но мы начали с противоречия в стане спектроскопистов. Как только белые карлики перестали быть сенсацией, астрономы задумались над тем, какую же связь между основными характеристиками звезд теперь считать прочной? На чем основываться, сортируя светила?

Вы чувствуете, как автор упорно гнет свою линию, стремясь во что бы то ни стало вогнать звезды в тесные рамки классификации? И здесь дело не в природном педантизме. После неувязки с белыми карликами только три параметра еще крепко держались друг за друга: цвет излучения и температура поверхности определяли спектральный класс звезды. А как быть со светимостью? Могут ли звезды, принадлежащие к одному классу, иметь различную светимость? Или светимость — жесткая характеристика классности далеких светил? Или такой вопрос: насколько неразрывно связаны между собой светимость и поверхностная температура?

Без решения этих задачек начинать разговор о жизни звезд было бессмысленно. И вот…

В 1905 году астроном Э. Герцшпрунг, крупнейший специалист в области звездной астрономии и член нескольких академий наук мира, на Потсдамской обсерватории разделил красные звезды на две группы — большой и малой светимости. Выходило, что и цвет не являлся критерием «сортности». Пусть читателя не охватывает разочарование: «Подумаешь — разделил на две группы! Что в этом особенного?» Дело в том, что решиться разделить единую компанию красных звезд на гигантов и карликов можно, лишь имея определенный взгляд на эволюцию звезд, отчетливо представляя себе жизненный путь, который проходят эти небесные тела за миллиарды лет своего существования. Ведь далекий гигант в окуляре телескопа может почти ничем не отличаться от близкого карлика.

А пять лет спустя за океаном молодой профессор Принстонского университета Генри Норрис Рессел совершенно самостоятельно пришел к тому же выводу: среди красных звезд должны существовать два типа — гиганты и карлики.

К первому относятся молодые звезды, находящиеся в самом начале своей жизни. Плотности их ничтожны, температуры высокие, диаметры большие.

Ко второму — звезды, жизненный путь которых уже позади. Они сжались, стали плотнее перед тем, как погаснуть.

Рессел построил диаграмму, на которой по оси абсцисс отложил спектральные классы, а по ординате — светимости звезд. Картина получилась очень любопытная. Доклад Рессела о диаграмме спектр — светимость впервые был назначен на собрании Королевского астрономического общества 13 июня 1913 года. Дата вдвойне несчастливая. И тем не менее успех сообщения превзошел все ожидания. Астрономы интуитивно почувствовали, что диаграмма должна быть как-то связана с эволюцией звезд, и дружно взялись за ее изучение и доработку.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука