Обратимся теперь к другой стороне движения нашей планеты – к форме ее орбиты. Как и все планеты, Земля подчиняется первому закону Кеплера: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
Каков же тот эллипс, по которому движется земной шар? Сильно ли отличается он от круга?
В учебниках и книгах по начальной астрономии нередко изображают земную орбиту в перспективе, в форме довольно сильно растянутого эллипса. Такой зрительный образ, неправильно понятый, запечатлевается у многих на всю жизнь: они остаются в убеждении, что орбита Земли – заметно растянутый эллипс. Это вовсе не так: земная орбита отличается от круга настолько мало, что ее нельзя даже изобразить на бумаге иначе, как в форме круга. При поперечнике орбиты на чертеже в целый метр отступление фигуры от круга было бы меньше толщины той линии, которой она изображена. Такого эллипса не отличил бы от круга даже изощренный глаз художника
Рис. 17. Эллипс и его оси – большая (
Рис. 18. Как разыскать фокусы эллипса
Познакомимся немного с геометрией эллипса. В эллипсе (рис. 17)
Мы будем иметь точное представление о форме земной орбиты, если узнаем величину ее эксцентриситета. Это можно определить и не измеряя величину орбиты. Дело в том, что Солнце помещается в одном из фокусов орбиты и кажется нам с Земли неодинаковой величины вследствие различного удаления точек орбиты от этого фокуса. Видимые размеры Солнца то увеличиваются, то уменьшаются, и отношение размеров, конечно, в точности отвечает отношению расстояний Земли от Солнца в моменты наблюдений. Пусть Солнце помещается в фокусе
из которой можно образовать так называемую производную пропорцию
или
Значит,
т. е. эксцентриситет земной орбиты равен 0,017. Достаточно, как видите, тщательно измерить видимый диск Солнца, чтобы определить форму земной орбиты.
Покажем теперь, что орбита Земли весьма мало отличается от круга. Вообразим, что мы начертили ее на огромном чертеже, так что большая полуось орбиты равна 1 м. Какой длины окажется другая – малая полуось эллипса? Из прямоугольного треугольника
Но
Имеем
и, значит,
Мы узнали, что на чертеже даже столь крупного масштаба разница в длине большой и малой полуосей земной орбиты не превышает 1
/7 мм. Тонкая карандашная линия имеет толщину, большую, чем эта величина. Значит, мы практически не делаем никакой ошибки, когда чертим земную орбиту в форме круга.Куда следует поместить изображение Солнца на таком чертеже? Насколько надо отодвинуть его от центра, чтобы оно оказалось в фокусе орбиты? Другими словами, чему равно расстояние
Центр Солнца должен на чертеже отстоять на 1,7 см от центра орбиты. Но так как само Солнце должно быть изображено кружком в 1 см поперечником, то только опытный глаз художника заметил бы, что оно помещено не в центре круга.
Практический вывод из сказанного тот, что на рисунках можно чертить орбиту Земли в виде круга, помещая Солнце чуть сбоку от центра.
Может ли столь незначительная асимметрия в положении Солнца влиять на климатические условия Земли? Чтобы выяснить, в чем могло бы обнаружиться подобное влияние, произведем опять мысленный опыт, обратимся к «если бы». Допустим, что эксцентриситет земной орбиты возрос до более заметной величины, – например, до 0,5. Это значит, что фокус эллипса делит его полуось пополам; такой эллипс будет иметь вытянутость примерно куриного яйца. Ни одна из орбит главных планет солнечной системы не обладает столь значительным эксцентриситетом; орбита Плутона, самая вытянутая, имеет эксцентриситет 0,25. (Но астероиды и кометы движутся и по более вытянутым эллипсам.)
Если бы путь Земли был вытянут сильнее