Читаем Занимательный космос. Межпланетные путешествия полностью

Труднее всего было бы подняться с поверхности (фотосферы) Солнца, если бы это могло понадобиться: нужна скорость в 618 км/с. Зато с лунной поверхности можно отлететь при скорости всего в 2,4 км/с, не слишком далекой от той, с какой снаряды покидали жерло пушки «Колоссаль» при бомбардировке Парижа с расстояния 120 км.

Небесные тела, от которых всего легче отчаливать космическому кораблю, – это астероиды и мелкие планетные спутники. Чтобы покинуть, например, поверхность одного из спутников Марса – самых крошечных из известных нам планетных лун, – достаточно было бы сообщить ракете начальную скорость всего лишь в 20 м/с. Отсюда ясно, какое важное значение приобретут в будущем подобные миниатюрные небесные тела в качестве удобных пристаней для временных стоянок космических кораблей.

Зато высадка на Юпитер (и обратный взлет с него) совершенно неосуществимы при тех средствах, которые мы можем предвидеть. Действительно, для подъема с Юпитера нужна начальная скорость 60 км/с – в 12 раз большая, чем скорость вытекания газа в водородной ракете. Но если v/c = 12, то Мt/Мk = около 160 000 (см. уравнение ракеты). Устроить ракету в 160 тысяч раз более легкую, чем заключенный в ней запас горючего, – конечно, немыслимо. Вообще, посещение больших планет – Юпитера, Сатурна, Урана, Нептуна – вопрос, не разрешенный современной теорией звездоплавания.

От скоростей перейдем к маршрутам путешествий и к их продолжительности. С путями следования космических кораблей дело обстоит довольно своеобразно. Казалось бы, в просторе межпланетных пустынь самый естественный и выгодный путь – прямая линия. Где, как не в мировом пространстве, целесообразен был бы тот примитивный способ решения дорожного вопроса, с помощью которого Николай I наметил некогда направление Октябрьской дороги – прокладывать пути по линейке? Между тем именно прямые направления явятся в звездной навигации редким исключением, правилом же будут пути кривые. Кратчайший в геометрическом смысле путь окажется в практике звездоплавания настолько невыгодным в смысле расходования горючего, что им совершенно невозможно будет воспользоваться.

Мы поймем происхождение этого парадокса, если вспомним, что ракета, покидающая земной шар по направлению радиуса земной орбиты, сохраняет и ту скорость, какую имеет земной шар, т. е. 30 км/с по направлению, перпендикулярному к радиусу. Если бы мы пожелали направить звездолет по кратчайшему пути на Марс в момент противостояния, то должны были бы прежде всего свести к нулю 30-километровую скорость звездолета по касательной к земной орбите. Для уничтожения этой скорости нет другого средства, как сообщить ракете такую же скорость в противоположном направлении. Значит, еще до начала собственно полета на Марс звездолет должен развить скорость 30 км/с, для чего при нефтяном горючем потребовался бы запас его в 1500 раз тяжелее самой ракеты. Уже и это совершенно неисполнимо, – а ведь нужно еще иметь запас горючего для сообщения ракете значительной скорости по направлению к орбите Марса; и наконец, понадобится весьма много горючего для безопасного спуска на Марс, так как, приблизившись под прямым углом к его движению, звездолет должен приобрести ту скорость, с какою Марс движется по орбите (24 км/с). Общий итог так огромен, что неосуществимость подобного полета становится совершенно бесспорной.

Сходные затруднения представятся при полете по прямому пути и к другим планетам, безразлично – внешним или внутренним. Приходится поэтому отказаться от прямолинейных маршрутов и избрать иные пути. Как мореплаватели для передвижения парусных судов пользуются морскими и воздушными течениями, так звездоплаватели будут пользоваться притяжением Солнца, направляя корабли по путям, определенным законами небесной механики. А эти дороги – не прямые: естественный путь космического корабля – дуга эллипса, более или менее вытянутого. Как и всякое небесное тело, звездолет должен двигаться по коническому сечению.

Рассмотрим сначала путешествие на соседние с нами планеты – Марс и Венеру. Лунные маршруты сложнее, и о них мы поговорим особо.

Полет на Марс с наименьшим расходом энергии может быть осуществлен по эллиптическому пути, который охватывает земную орбиту и лежит внутри орбиты Марса, касаясь обеих орбит в начальной и конечной точках путешествия. Рисунок 27 поясняет сказанное: Т — положение Земли, М — положение Марса; эллипс ТМ — путь перелета. Ракета должна покинуть земной шар с такой скоростью, какая необходима, чтобы, подчиняясь законам небесной механики, направиться по эллипсу ТМ. Первоначальный запас скорости донесет ракету до точки М, где (если надлежащим образом выбрать момент отправления) будет находиться Марс; обозрев Марс, не снижаясь на него, пассажиры умчатся в ракете по другой половине эллиптического пути к исходной точке Т. Но найдут ли они здесь в момент прибытия родную планету? Нет, потому что все путешествие по такому маршруту займет 519 суток и Земля окажется далеко от своего прежнего положения.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже