Читаем Занимательный космос. Межпланетные путешествия полностью

«Сила Р сообщает свободной массе т ускорение а, которое определяется из уравнения Р = та. Если сила Р постоянна, то и ускорение, постоянно, т. е. движение – равномерно-ускоренное. Если постоянная сила Р действует на массу т в течение времени t, то она сообщает ей скорость V = at. Чтобы оценить действие силы Р за время t, мы умножим выражение силы Р = та на t. Мы получим равенство Р · t = т · v.

Произведение Р · t называется импульсом силы Р за время t. Произведение т · v называется количеством движения массы т, движущейся со скоростью v. Импульс силы равен количеству движения массы, приведенной в движение этой силой.

Если действует сила переменная, то, строго говоря, этот закон можно прилагать лишь к малым промежуткам времени
t, в течение которых силу можно считать неизменяющейся. Тогда предыдущее равенство принимает вид:

P · Δt = т · Av.

Понятие импульса и количества движения постоянно применяются в случаях, когда проявляются действие и противодействие.

Рис. 57. Баллистический маятник

Примером практического применения этих понятий может служить баллистический маятник, употребляемый для измерения скорости снаряда. Он состоит из большой, но податливой массы М (например, ящика с песком), которая подвешена на стержне, могущем вращаться около некоторой оси (рис. 57). В маятник стреляют снарядом, имеющим массу т, снаряд входит в песок и сообщает общей массе М + т некоторую скорость. Маятник отклоняется, и высоту его подъема h измеряют. По высоте подъема вычисляют начальную скорость маятника

.

Количество движения, приобретенное маятником (вправо), есть Mvx1; количество движения, приобретенное снарядом влево (или потерянное им, при счете вправо), равно:

т v – т v1

или

m (v – v1).

Итак,

M v1 = m (v — v1),

или

mv = (M+ m) v1.

Отсюда можно вычислить v.

В левой части последнего уравнения (mv) стоит количество движения всей системы (маятник и снаряд) до выстрела, в правой части – количество движения системы после выстрела. Таким образом, количество движения системы не изменяется, если только в эту систему включены все взаимодействующие тела. Такая система называется замкнутой . Итак, в замкнутой системе количество движения остается неизменным, какие бы процессы внутри нее ни происходили. Это закон сохранения количества движения .

Другой пример представляет изображенный на рис. 58 двусторонний пистолет. На штативе горизонтально лежит медная трубка, на один конец которой навинчен массивный металлический цилиндр. Другой такой же цилиндр имеет насадку, плотно входящую в трубочку [49] . В трубке сделано отверстие для поджигания с полочкой для пороха. Насыпав на полочку и в трубку немного пороха, вставляют снаряд и кладут пистолет на штатив. Затем при помощи раскаленной проволоки поджигают порох, насыпанный на полочку; порох в трубке взрывается – оба цилиндра с насадками получают ускорения в противоположные стороны и упадут на стол в одинаковых расстояниях от штатива. Действие взрыва одинаково в обе стороны и сообщает обоим цилиндрам одинаковые скорости.

Рис. 58. Двусторонний пистолет

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже