Читаем Занимательный космос. Межпланетные путешествия полностью

Ни от каких других причин окончательная скорость ракеты в среде без тяжести не зависит. Это – замечательный результат. Оказывается, что продолжительность и порядок горения нисколько не влияют на величину приобретаемой ракетой скорости: «Происходит ли горение равномерно или нет, длится ли оно секунды или тысячелетия – это все равно; даже перерывы ничего не значат» (Циолковский). Второй поучительный вывод тот, что скорость ракеты не обусловливается вовсе, как можно было бы ожидать, абсолютным количеством сожженных веществ; она зависит лишь от отношения массы этих веществ к массе незаряженной (вернее – разряженной) ракеты. Маленькая ракета, заряженная несколькими граммами горючего, может приобрести такую же окончательную скорость, как и исполинская ракета с зарядом в сотни или тысячи тонн, – если только окончательная масса ракеты в обоих случаях составляет одинаковую долю первоначальной.

Читатель должен также отрешиться от распространенного представления о ракете как об аппарате, отталкивающемся от воздуха. Это странное ходячее мнение потому так живуче, что для поверхностного суждения кажется естественным и бесспорным. Хотя правильный взгляд на механизм полета ракеты установился уже в эпоху Ньютона, заблуждение это владеет большинством умов еще и в наши дни, мешая правильно разбираться в вопросах ракетного летания.

Уместно остановиться здесь и на другом заблуждении более тонкого характера. Против возможности межпланетных перелетов выдвигается нередко следующий довод. На земном шаре не существует такого горючего, энергия которого, превращенная в механическую работу, была бы достаточна для переноса его самого хотя бы на Луну. Килограмм наиболее энергоемкого горючего – смеси водорода с кислородом – развивает не более 2900 × 427, т. е. 1 240 000 кгм. Между тем, чтобы удалить 1 кг вещества с земной поверхности на расстояние до Луны, требуется совершить работу свыше 6 000 000 кгм. Отсюда делают поспешный вывод, что горючее, которое не может даже самого себя унести на Луну, тем более бессильно доставить туда еще какой-нибудь груз. Значит, межпланетные путешествия – несбыточная мечта; все стремления ее осуществить обречены на полную неудачу.

Рассуждения подобного рода, хотя и высказываются зачастую сведущими в других отношениях авторами, свидетельствуют о полном незнакомстве с условиями работы ракеты. Забывают, что ракета вовсе не несет с собою запаса горючего на протяжении всего пути. Она сжигает и отбрасывает свое горючее еще вблизи Земли, в первые несколько минут полета; весь же остальной путь ракета летит за счет энергии, запасенной в течение этих немногих минут горения. Кроме того, надо помнить, что межпланетная ракета расходует массу горючего, значительно превосходящую массу полезного груза ракеты.

Обратимся теперь к языку математических формул, чтобы отчетливее охватить условия движения ракеты. Обозначим, как прежде, начальную массу ракеты, т. е. массу ее вместе с зарядом, через Mt; массу ракеты после израсходования заряда, т. е. ее конечную массу – буквою Мк. Скорость, с какою продукты сгорания удаляются от летящей ракеты, обозначим буквою с. Наконец, скорость, приобретаемую самой ракетой по израсходованию запаса горючего (в количестве Mt—Мк), обозначим через v.

Между этими четырьмя величинами Mt, Мк, с и v существует зависимость, впервые установленная К.Э. Циолковским; мы вправе называть ее «формулой Циолковского». А именно: для всякой ракеты, летящей в пустоте и в среде без тяжести, справедливо следующее равенство («уравнение ракеты»):

Перейти на страницу:

Все книги серии Межпланетные путешествия (версии)

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг