или забыть метить: сегодня область биологии, воспламененная спорами oб антропоморфизме, – изучение растений и тех способов, которыми они воспринимают среду и реагируют на нее. В 2007 году 36 выдающихся ботаников подписали письмо, которое уничтожило зарождающуюся «область нейробиологии растений» (Alpi et al. [2007]). Те, кто выдвинул этот термин, утверждали, что у растений есть системы электрических и химических сигналов, эквивалентные тем, что были обнаружены у человека и других животных. 36 авторов письма заявили, что это «поверхностные аналогии и сомнительные экстраполяции». Последовал весьма оживленный спор (Trewavas [2007]). С антропологической точки зрения, эти противоречия необыкновенно интересны. Наташа Майерс, антрополог из Йоркского университета в Канаде, опросила ряд ботаников, как они понимают поведение растений (Myers [2014]). Она описала неспокойную ситуацию в отношении к антропоморфизму и различные способы, которые исследователи применяли, чтобы разобраться в ней.
попадают в другую западню: Kimmerer (2013), “Learning the Grammar of Animacy”.
от которых зависит их существование: «Его отношения с деревом, приютившим его, очень плохо изучены, – объяснил Лефевр, – даже в тех местах, где урожайность трюфелей высока, соотношение корней, колонизированных грибом, часто чрезвычайно низкое. Это значит, что объяснить урожайность количеством минеральных веществ, получаемых грибом от его дерева, нельзя».
не принадлежащих миру людей организмах: о запахах и их сходстве см.: Burr (2012), ch. 2. Антрополог Анна Цзин (Anna Tsing) пишет, что в период Эдо в Японии (1603–1868) запах грибов мацутаке стал популярной темой в поэзии. Прогулки за грибами мацутаке превратились в осенний эквивалент празднования цветения сакуры и ссылки на «осенний аромат» или «аромат грибов» стали привычными поэтическими тропами (Tsing [2015]).
Глава 2. ЖИВЫЕ ЛАБИРИНТЫ
и нет нити, ведущей из него: Cixous (1991).
каким-то невероятным образом, является и одним, и многими одновременно: о поиске грибом выхода из лабиринта см.: Hanson et al. (2006), Held et al. (2009, 2010, 2011, 2019). Великолепные видео и дополнительную информацию о Held et al. (2011) см. на сайте www.sciencedirect.com/science/article/pii/S1878614611000249 [дата обращения 29 октября 2019 г.] и www.pnas.org/content/116/27/13543/tab-figures-data [дата обращения 29 октября 2019 г.].
бросающий вызов нашему воображению, ограниченному принадлежностью к животному миру: о морских грибах см.: Hyde et al. (1998), Sergeeva and Kopytina (2014) и Peay (2016); о грибках в пыли см.: Tanney et al. (2017); по поводу приблизительного определения длины грибных гиф в почве см.: Ritz and Young (2004).
Она полностью перестроилась: часто наблюдаемое явление см.: Boddy et al. (2009) и Fukusawa et al. (2019).
еще не знаем, что лежит в основе их памяти: Fukusawa et al. (2019). Послужил ли новый кусок дерева причиной изменения концентрации химических веществ или экспрессии генов по всей сети? Или мицелий быстро перераспределился в пределах старого куска дерева, чтобы расти заново в одном направлении было проще? У Бодди (Boddy) и ее коллег уверенности в этом нет. Исследователи, ставившие перед грибами задачу найти выход из микроскопических лабиринтов, заметили, что структуры внутри растущих кончиков гиф ведут себя как встроенные гироскопы. Они позволяют гифам запоминать направление, благодаря чему те возвращаются на изначальную траекторию роста после отклонения от нее. Так они обходят препятствия (Held et al. [2019]). Однако маловероятно, чтобы этот механизм вызвал эффект, который наблюдали Бодди и ее коллеги, так как все гифы – включая кончики – были полностью удалены с первого куска дерева, прежде чем его поместили в новую чашку Петри.