а другие – за их потребление: об использовании бактериями грибных сетей читайте Otto et al. (2017), Berthold et al. (2016) и Zhang et al. (2018); о влиянии «эндогифовых» бактерий на метаболизм грибов см.: Vannini et al. (2016), Bonfante and Desirò (2017) и Deveau et al. (2018); о разведении бактерий в толстоногом сморчке см.: Pion et al. (2013) и Lohberger et al. (2019).
и их союзницами осами: Babikova et al. (2013).
размышлял Джонсон: о передающейся от томатного растения к томатному растению информации см.: Song and Zeng (2010); о сигналах о стрессе, идущих от ростков Дугласовых пихт к росткам сосны, см.: Song et al. (2015a); о переносе веществ между ростками Дугласовой пихты и сосны см.: Song et al. (2015b).
«как он в действительности посылается»: об электросигнализации у растений см.: Mousavi et al. (2013), Toyota et al. (2018) и комментарии Muday and Brown-Harding (2018); об электрической реакции растений на растительноядность см.: Salvador-Recatalà et al. (2014). Остается много вопросов о химическом общении, которое происходит между корнями растений и грибами, в первую очередь позволяя им завязать отношения друг с другом. Рид однажды попытался вырастить микогетеротрофа, тот самый «пылающий огненный столб» по Мьюиру, и добился кое-какого успеха, прежде чем наткнуться на «каменную стену». «Было увлекательно, – вспоминал Рид, – грибница росла в сторону семени, проявляя огромный интерес и волнение – она вся распушилась и сказала “привет!”. Совершенно очевидно, что происходит обмен сигналами. Грустно то, что у нас никогда не было достаточно больших растений, чтобы позволить процессу развиваться. Вопросы о сигналах останутся вопросами, с которыми придется разбираться уже следующему поколению исследователей».
связаны между собой: Beiler et al. (2009 and 2015). В других работах рассматривалась архитектура общих микоризных сетей, на базе которых происходит взаимодействие видов, однако в них не было четкого описания расположения деревьев внутри экосистемы. Среди этих работ исследования, проведенные Southworth et al. (2005), Toju et al. (2014 and 2016) и Toju and Sato (2018).
это вызовет серьезные нарушения: если произвольно провести линии между деревьями на экспериментальном участке леса Бейлера, то каждое дерево окажется связанным примерно таким же числом линий, что и другие. Деревья, соединенные с другими исключительно многочисленными связями или чрезвычайно малым их числом, будут попадаться крайне редко. Можно было бы подсчитать среднее количество связей для одного дерева, и связи большинства деревьев попали бы в это среднее число. Используя сетевую лексику, эта характерная узловая точка представляла бы собой «масштаб» сети. В действительности мы наблюдаем нечто иное. На экспериментальных ли лесных участках Бейлера, или карте всемирной паутины Барабаши, или в сетке авиамаршрутов, всего несколько узлов с очень большим количеством связей охватывают подавляющее большинство соединений в сети. Узловые точки в такого рода сетях настолько сильно отличаются друг от друга, что не существует такого понятия, как характерная узловая точка, или типичный узел. У сетей отсутствует масштаб, и их описывают как «безмасштабные». Открытие Барабаши в конце 1990-х безмасштабных сетей позволило создать схему для моделирования поведения сложных систем. О различии между узлами с большим числом и малым числом связей см.: Barabási (2014), “The Sixth Link: The 80/20 Rule”; об уязвимости безмасштабных сетей см.: Albert et al. (2000) и Barabási (2001); о безмасштабных сетях в природе см.: Bascompte (2009).