В 1998 году Барабаши с коллегами предпринял попытку нанести на карту всемирную паутину. До этого момента у ученых не было методов анализа структуры и свойств сложных сетей, хотя они и преобладают в жизни людей. В рамках раздела математики, ответственного за моделирование сетей, – теории графов – нельзя описать поведение большинства сетей в реальном мире, и многие вопросы так и повисли в воздухе. Почему эпидемии и компьютерные вирусы распространяются так быстро? Почему некоторые сети продолжают функционировать, несмотря на массовые нарушения? Благодаря исследованию всемирной паутины, проведенному Барабаши, появились новые математические методы и инструменты. Оказалось, что широкий диапазон сетей, от половых отношений человека до биохимических взаимодействий внутри организмов, управляется несколькими ключевыми принципами. Всемирная паутина, как заметил Барабаши, «имеет больше сходства с экосистемой или системой клеток, нежели со швейцарскими часами». Сегодня невозможно скрыться от сетевой науки. Выберите любую научную область – от неврологии, биохимии, экономики, теории эпидемий, алгоритмов поисковых систем или машинного обучения, на которых основан ИИ, до астрономии и науки о Вселенной, космической сети, испещренной линиями газов и звездными скоплениями. Вполне возможно, и она использует сетевую модель, чтобы разобраться в предмете.
Как объяснил мне Рид, вдохновленный статьей Симард и побуждаемый такой привлекательной концепцией «вселесной паутины», «понимание общих микоризных сетей безмерно расширилось», попав в конечном итоге в фильм «Аватар» Джеймса Камерона. Если помните, там фигурировала сияющая живая сеть, которая объединяла под землей все растения. Работы Симард и Рида подняли ряд новых волнующих вопросов. Что еще, помимо углерода, может передаваться между растениями? Насколько распространено это явление в природе? Может ли влияние этих сетей распространиться на целые леса или экосистемы? И что они меняют?
Никто не отрицает, что общие микоризные сети широко распространены в природе. Они неизбежны, учитывая свободные нравы растений и грибов, а также готовность микоризных сетей сливаться друг с другом. Однако не все убеждены в том, что они приносят какую-либо существенную пользу.
С одной стороны, после статьи Симард 1997 года в журнале
С другой стороны, ряду исследователей не удалось зафиксировать трансфер веществ. Само по себе это не значит, что микоризные сети не играют никакой роли: только начавшему развиваться ростку, который сумел «подключиться» к большой наличной грибной сети, не понадобился бы углерод для выращивания с нуля собственной микоризной сети. Тем не менее не стоит использовать универсальный подход к разным экосистемам или разным типам грибов. Представляется, что во многих ситуациях общая микоризная система делает для каждого из своих растений-партнеров не больше, чем сделал бы один – «частный» – микоризный партнер.
Вполне естественно ожидать от общих микоризных сетей нестабильного поведения. Существует много разных типов микоризных отношений, и разные группы грибов могут вести себя совершенно по-разному. Более того, поведение симбионтов внутри союза гриба и растения может меняться в зависимости от обстоятельств. И все же разнородность экспериментальных данных породила разнобой мнений в исследовательском сообществе. С точки зрения некоторых, имеющаяся информация свидетельствует, что общие микоризные сети делают возможными особые формы взаимодействия и могут оказать глубокое влияние на состояние экосистем. Другие исследователи трактуют имеющиеся результаты иначе и приходят к выводу, что общие микоризные сети не создают уникальных экологических возможностей. Для растений же они не важнее, чем общее корневое или воздушное пространство.