На практике, однако, рынки предсказаний гораздо сложнее, чем в теории. Во время президентской кампании 2008 года, например, на одной из наиболее популярных таких площадок — InTrade
— наблюдалась серия странных колебаний, когда некто начал делать очень большие ставки на Джона Маккейна. Это привело к возникновению резких скачков в прогнозировании победы последнего. Никто не знал, кто за этим стоял, но подозревали, что это был сторонник Маккейна или даже член его команды. Манипулированием рыночными ценами он или она пытались создать впечатление, будто надежный источник указывал на избрание Маккейна, таким образом пытаясь повлиять на общественность с целью создания самовыполняющегося пророчества. Но это не сработало. Резкие скачки были быстро снивелированы другими трейдерами, и таинственный игрок в итоге потерял деньги. Следовательно, рынок функционировал, по сути, так, как и должен был. Тем не менее этот случай позволил выявить потенциальное слабое место теории, предполагающей, будто рациональные трейдеры не станут терять деньги специально. Если же цель участника заключается в манипулировании восприятием людей вне рынка (например, средств массовой информации) и если суммы относительно небольшие (десятки тысяч долларов по сравнению со, скажем, десятками миллионов, тратящимися на телерекламу), тогда убытки не будут иметь значения — в этом случае не ясно, какой вообще сигнал посылает рынок{175}.Все эти проблемы вынудили ряд скептиков утверждать, будто рынки предсказаний не обязательно должны превосходить другие, менее сложные методы — такие, как опросы общественного мнения, которыми на практике труднее манипулировать. Впрочем, оценке относительной эффективности последних было уделено так мало внимания, что наверняка ничего утверждать нельзя{176}
. Чтобы решить этот вопрос, мои коллеги из Yahoo! Research провели систематическое сравнение различных методов прогнозирования. Рассматриваемые предсказания касались результатов матчей Национальной футбольной лиги. Сперва мы провели опрос общественного мнения по каждой из 14–16 игр, проходивших в выходные в течение сезона 2009 года. В его рамках респондентов просили указать, во-первых, вероятность победы принимающей команды, а во-вторых, степень уверенности в своем прогнозе. Кроме того, те же вопросы мы предложили посетителям Probability Sports — веб-сайта, где участники выигрывают денежные призы, правильно предсказав исход спортивных соревнований. Затем мы сравнили результаты этих двух опросов с прогнозами Vegas sports betting market — одного из старейших и наиболее популярных рынков пари в мире, — а также другой известной площадки предсказаний под названием Tradesports . И, наконец, мы сопоставили прогнозы рынков и опросов с вычислениями двух простых статистических моделей. Первая опиралась исключительно на статистическую вероятность победы принимающей команды (та выигрывала в 58 % матчей), тогда как вторая учитывала статистику побед и поражений обеих клубов. Таким образом, мы провели шестистороннее сравнение различных методов прогнозирования — двух статистических моделей, двух рынков и двух опросов общественного мнения{177}.Учитывая то, насколько разными были эти методы, полученные данные поражали: качество прогнозов оказалось одинаковым! Справедливости ради, два рынка дали чуть более точные прогнозы, чем другие методы, что согласуется с вышеприведенным теоретическим аргументом. При этом наилучший из них — рынок Vegas Market
— дал примерно на 3 % более верное предсказание, чем наихудший — модель, всегда ставящую на 58 %-ную вероятность победы принимающей команды. Остальные методы заняли места где-то посередине. Кстати, модель, учитывавшая статистику побед и поражений обеих команд, оказалась весьма близка к Vegas Market : в случае использования обоих методов прогнозирования фактического расхождения в количестве очков, набранных этими клубами, величина средней ошибки их прогнозов отличалась бы менее чем на одну десятую. С одной стороны, если вы ставите на результаты сотен или тысяч игр, такие крошечные различия — это различия между выигрышем и проигрышем энной суммы денег. А с другой — агрегированная мудрость тысяч участников рынка, коллективно посвящающих бесчисленное количество часов анализу грядущих матчей в стремлении найти хоть какую-нибудь полезную информацию, лишь немногим лучше простой статистической модели, опирающейся на средние статистические показатели.