В Массачусетском технологическом институте группа исследователей под руководством Дэниэла Ночеры создала искусственный лист, который обладает способностью расщеплять воду на водород и кислород. Лист размером с игральную карту состоит из кремния; катализатором для ускорения фотохимического процесса служит фосфат кобальта. Расход электричества при электролизе очень невелик. Если нанести катализатор на оборотную сторону обычной солнечной батареи и поместить плоский модуль в сосуд с водой, то дополнительный источник электричества для выделения водорода не нужен. В дальнейшем Ночера намерен создать такую автономную систему, при помощи которой энергию, необходимую в домохозяйстве, можно было бы получать самостоятельно из солнечного света и нескольких литров воды. Эта технология представляет интерес прежде всего для сельской местности, где еще не все дома подключены к федеральной системе электроснабжения. До коммерческого использования открытия Ночеры пока далеко, но то же самое можно было сказать и о первых фотогальванических установках.
Бременская стартап-компания Sunfire разработала метод производства синтетического топлива из углекислого газа и воды. При помощи электролиза воду расщепляют на кислород и водород. Водород вступает в реакцию с CO2 и в несколько этапов преобразуется в бензин, дизель, керосин или метан. Углекислый газ поступает из воздуха через фильтр. При высокотемпературном паровом электролизе КПД процесса достигает 70 %. Эта часть использованной электроэнергии как тепловой эквивалент аккумулируется в топливе. Именно поэтому данный метод наиболее подходит для хранения избыточной ветровой и солнечной энергии. В 2010 г. была введена в строй первая опытная лабораторная установка, а уже к 2016 г. планируется ввести в строй первые допромышленные образцы. Особый интерес этот метод представляет для самолетостроения и грузового автомобильного транспорта, где из-за невысокой энергоемкости электробатарей невозможно использовать электромоторы[184].
Американский физик Фриман Дайсон, известный своим нестандартным мышлением, видит ключ к развитию сельских регионов во всем мире в сочетании солнечной энергии, фотосинтеза и Интернета: солнечная энергия дает необходимое электричество, фотосинтез поставляет энергию для транспорта, Интернет призван покончить с изоляцией деревенских общин, открыв им доступ к информации и рынкам[185].
Второе главное направление исследований в области фотосинтеза касается способности природных организмов преобразовывать солнечный свет и углекислый газ в углеродные соединения. Выращенные в биореакторах водоросли и бактерии способны впитывать углекислый газ и создавать из него вещества, из которых можно синтезировать биодизель и этанол. Один пример: «Перспективный метод, при помощи которого из углекислого газа… можно производить бутанол, разработали ученые Калифорнийского университета. Джеймс Льяо и его коллеги культивировали генно-модифицированный вариант бактерии ralstonia eutropha, насыщая воду углекислым газом. При подаче электричества из обычной солнечной батареи углекислый газ вступает в реакцию с водой, образуя муравьиную кислоту. Микробы поглощают муравьиную кислоту, преобразовывая ее в бутанол. Для синтеза биотоплива можно использовать алкоголь, имеющий относительно высокую энергетическую плотность. Правда, процесс еще недостаточно эффективен, но движется в нужном направлении, поскольку в будущем таким способом можно будет аккумулировать солнечное электричество в углеводородах»[186]. Подобные методы уже можно применять в промышленных масштабах. Лидируют в производстве топлива при помощи биологических организмов американские военные. И дело вовсе не в заботе о климате, скорее их интересует возможность достижения независимости от импорта нефти и сокращения длинных транспортных цепочек. Уже прошли первые пробные полеты на биокеросине[187].