Читаем Землетрясения полностью

Не думайте, что удовлетворение такого требования, как жесткость здания, совсем уж простая проблема. В самом деле, исследования, связанные с сейсмостойкостью, сопровождались не только опытами, но и потоком математических и инженерных выкладок. Ученые обнаружили, что эту проблему надо решать не только в статике, но и в динамике и что подземный толчок — сам по себе явление значительно более сложное, чем думали раньше.

Разумеется, мы не станем здесь излагать все детали математических вычислений и сложных анализов и ограничимся лишь теми выводами, к которым пришли специалисты. Теперь эти выводы кладутся в основу проектирования всех сейсмостойких сооружений.

Прежде всего отметим, что сейсмостойкое сооружение должно проектироваться совсем не так, как обычное. Последнее несет главным образом вертикальные нагрузки. Идет ли здесь речь о жилом доме, мосте или водонапорной башне, жесткость должна с особенной тщательностью обеспечиваться по вертикальной компоненте. Надо рассчитать так, чтобы пол десятого этажа не рухнул, если на него поставят рояль или несгораемый шкаф. Что касается горизонтального сопротивления, то здесь не приходится бояться ни перегрузки, ни ударов, разве только давления сильных ветров. В данном случае вместо каменной стены можно обойтись цементной, прикрепленной к металлическому каркасу.

Между тем при землетрясении разрушительной бывает именно горизонтальная компонента удара. Она измеряется ускорением, то есть сантиметрами на секунду в квадрате. Этим показателем пользуются для оценки сейсмостойкости строений. Мы не будем вдаваться в эти малозанимательные сухие подробности, но скажем все же, что именно ускорение толчка в данном месте определяет интенсивность землетрясения. Например, землетрясение с интенсивностью V соответствует ускорению, равному 0,015 ускорения силы тяжести (то есть 0,015 g); с интенсивностью X — 0,7 g, а с интенсивностью XII — 3 g.

Остается выяснить, к каким практическим выводам могут прийти архитекторы после таких вычислений? В первую очередь потребовалось конечно, создать приборы для измерения ускорений. Конструкторы использовали небольшие сейсмографы с очень малым периодом (0,1 секунды). Затем они преобразовали эти приборы в акселографы, которые дают на ленте фотографической бумаги графическое изображение ускорений. Акселографы были установлены на различных этажах жилых зданий.

Посредством приборов установили, что ускорение гораздо сильнее на верхних этажах, чем внизу (хотя в этом не сомневались и раньше), причем в среднем оно составляло 0,05–0,25 ускорения силы тяжести.

Отсюда вывели правило, согласно которому горизонтальное сопротивление, которое следует придать строению, должно равняться 0,1 его веса. Подтвердилось, что железобетон, позволяющий строить исключительно прочные здания, следует признать лучшим строительным материалом. И действительно, построенные из железобетона дома выдерживали толчки с интенсивностью VIII и даже IX. Это, впрочем, не означает, что можно возводить небоскребы в районе сильных сейсмических возмущений. Такое строительство было бы неоправданным прежде всего потому, что еще не умеют рассчитать все последствия толчка интенсивностью более X. Кроме того, сильная сейсмическая активность свойственна районам, сложенным нестойкими породами, где, за исключением зданий с очень глубоко заложенным фундаментом, сооружения не могут безнаказанно выдержать большого сотрясения.

Но как же поступать, если нельзя строить из железобетона? В этом случае самым безопасным материалом будет дерево. Надо только возводить прочные стены и потолок и уменьшить размеры дверей и окон. Необходимо также изолировать дымоходы от крыш, с тем чтобы они при сотрясениях раскачивались, не задевая кровлю, наподобие астатического маятника.

При соблюдении этих строительных правил здание можно считать сейсмостойким, но не несгораемым. Впрочем, нам уже известно, что несгораемых сооружений нет.


Страховка от землетрясений

Судя по последним страницам, наша книга как будто меняет направление. Вместо того чтобы ограничиться сферой чистой наук», гордо пренебрегающей житейскими заботами, мы вдруг занялись такими вопросами, как строительство, каменная кладка и качество строительных материалов.

«Как мы отвлеклись от теоретической геофизик» и как печально, что белоснежное одеяние науки пачкается от соприкосновения с известкой», — может быть, вздохнет кто-нибудь из читателей. Пусть не обижаются на нас защитники «башни из слоновой кости», если мы решительно заявляем, что именно сейсмология — характерный прототип современной науки. Весьма желательно, чтобы наука неустанно преследовала неуловимую истину, но во сто крат увеличатся ее заслуги, если она снизойдет со своей высоты, задумается над жизнью человека и смиренно займется улучшением его участи!

Перейти на страницу:

Похожие книги

Зачем мы бежим, или Как догнать свою антилопу. Новый взгляд на эволюцию человека
Зачем мы бежим, или Как догнать свою антилопу. Новый взгляд на эволюцию человека

Бернд Хайнрих – профессор биологии, обладатель мирового рекорда и нескольких рекордов США в марафонских забегах, физиолог, специалист по вопросам терморегуляции и физическим упражнениям. В этой книге он размышляет о спортивном беге как ученый в области естественных наук, рассказывает о своем участии в забеге на 100 километров, положившем начало его карьере в ультрамарафоне, и проводит параллели между человеком и остальным животным миром. Выносливость, интеллект, воля к победе – вот главный девиз бегунов на сверхмарафонские дистанции, способный привести к высочайшим достижениям.«Я утверждаю, что наши способность и страсть к бегу – это наше древнее наследие, сохранившиеся навыки выносливых хищников. Хотя в современном представителе нашего вида они могут быть замаскированы, наш организм все еще готов бегать и/или преследовать воображаемых антилоп. Мы не всегда видим их в действительности, но наше воображение побуждает нас заглядывать далеко за пределы горизонта. Книга служит напоминанием о том, что ключ к пониманию наших эволюционных адаптаций – тех, что делают нас уникальными, – лежит в наблюдении за другими животными и уроках, которые мы из этого извлекаем». (Бернд Хайнрих)

Берндт Хайнрих , Бернд Хайнрих

Научная литература / Учебная и научная литература / Образование и наука