--. (2003b). Ricci flow with surgery on three-manifolds. http://arxiv.org/ abs/math.DG/0303109.
Peterson, I. (2003). Recycling topology. Science News Online 163 (17), April 26.
Pick, G. (1899). Geometrisches zur zahlenlehre. Sitzungber. Lotos, Naturwissen Zeitschrift, Prague 19, 311–319.
Plato (1921). Theaetetus. Sophist. With an English translation by H. N. Fowler. New York: G. P. Putnam's Sons.
--. (1972). Philebus and Epinomis. Translation and introduction by A. E. Taylor. London: Dawsons of Pall Mall.
--. (2000). Timaeus. Translated with an introduction by Donald J. Zeyl. Indianapolis: Hacket Publishing.
Poincare, H. (1881). Memoire sur les courbes definies par une equation dif-ferentielle. J. de Math. 7, 375–422.
--. (1885). Sur les courbes defines par les equations differentielles. Journal de mathematiques 1 (4), 167–244.
--. (1895). Analysis situs. J. Ec. Polytech ser. 2 1, 1-123.
--. (1899). Complement a l'analysis situs. Rend. Circ. Math. D. Palermo 13, 285–343.
--. (1900). Second complement a l'analysis situs. Proc. Lond. Math. Soc. 32, 277–308.
--. (1902a). Sur certaines surfaces algebriques; troisieme complement a l'analysis situs. Bull. Soc. Math. France 30, 49–70.
--. (1902b). Sur les cycles algebriques; quatrieme complement a l'analysis situs. J. de Math. 8, 169–214.
--. (1904). Cinquieme complement a l'analysis situs. Rend. Circ. Math. D. Palermo 18, 45-110.
--.(1913). The foundations of science: Science and hypothesis, the value of science, science and method. Science and Education. New York: The Science Press.
Poinsot, L. (1810). Memoire sur les polygones et les polyedres. Journal de l'ecole polytechnique 4, 16–48.
Polya, G. (1954). Induction and analogy in mathematics. Vol. 1 of Mathematics and plausible reasoning. Princeton, NJ: Princeton University Press.
Pont, J.-C. (1974). La topologie algebrique des origines а Poincare. Paris: Presses Universitaires de France.
Przytycki, J. (1992). A history of knot theory from Vandermonde to Jones. Aportaciones Matematicas Comunicaciones 11, 173–185.
Rado, T. (1925). Uber den begriff von Riemannsche flache. Acta Univ. Szeged 2, 101–120.
Ranicki, A. A., A. J. Casson, D. P. Sullivan, M. A. Armstrong, C. P. Rourke, and G. E. Cooke (1996). The Hauptvermutung book, volume 1 of K-Monographs in Mathematics. A collection of papers of the topology of manifolds. Dordrecht: Kluwer Academic Publishers.
Read, J. (1966). Prelude to chemistry: An outline of alchemy, its literature and relationships. Cambridge, MA: The M.I.T. Press.
Riasanovsky, N. V. (1993). A History of Russia (5th ed.). New York: Oxford University Press.
Richeson, D. (2007). The polyhedral formula. In R. Bradley and E. Sandifer (eds.), Leonhard Euler: Life, work and legacy. Vol. 5 of Studies in the history and philosophy of mathematics, 421-39. Amsterdam: Elsevier.
Riemann, G. F. B. (1851). Grundlagen fur eine allgemeine Theorie derFunctionen einer veranderlichen complexen Grosse. PhD thesis, Gottingen.
--. (1857). Theorie der Abel'schen Functionen. Journal fur Mathematik 54, 101–155. Also in Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, Berlin: Springer, 1990, 88-142.
Russell, B. (1957). The study of mathematics. In Mysticism and Logic, 55–69. Garden City, NY: Doubleday.
--. (1967). The autobiography of Bertrand Russell, vol. 1. Boston: Little, Brown.
Sachs, H., M. Stiebitz, and R. J. Wilson (1988). An historical note: Euler's Konigsberg letters. Journal of Graph Theory 12 (1), 133–139.
Salzberg, H. W. (1991). From caveman to chemist: Circumstances and achievements. Washington DC: American Chemical Society.
Samelson, H. (1995). Descartes and differential geometry. In Geo metry, topology, & physics, Conf. Proc. Lecture Notes in Geometry and Topology, IV, 323–328. Cambridge, MA: Internat. Press.
--. (1996). In defense of Euler. Enseign. Math. (2) 42 (3–4), 377–382.
Sandifer, E. (2004). How Euler did it: V, E and F, parts 1 and 2. Mathematical Association of America Online. http://www.maa.org/news/howeulerdidit.html.
Sarkaria, K. S. (1999). The topological work of Henri Poincare. In History of topology, 123–167. Amsterdam: North-Holland.
Schechter, B. (1998). My brain is open: The mathematical journeys of Paul Erdos. New York: Touchstone.
Schlafli, L. (1901). Theorie der vielfachen Kontinuitat. Denkschr. Schweiz. naturf. Ges. 38, 1-237.
Scholz, E. (1999). The concept of manifold, 1850–1950. In I. M. James (ed.), History of topology, 25–64. Amsterdam: North-Holland.
Seifert, H. (1934). Uber das Geschlecht von Knotten. Math. Ann. 110, 571–592.
Seifert, H., and W. Threlfall (1980). Seifert and Threlfall: A textbook of topology, vol. 89 of Pure and Applied Mathematics. Translated from the German edition of 1934 by Michael A. Goldman, with a preface by Joan S. Birman. With «Topolo-gy of 3-dimensional fibered spaces» by Seifert, translated from the German by Wolfgang Heil. New York: Academic Press. Harcourt Brace Jovanovich Publishers.