карандаш - у Константина.
Чтобы фокус удался, вы должны твердо помнить, сколько орехов вы дали каждому товарищу (раздавайте орехи поэтому всегда по алфавиту, как и было сделано в нашем случае).
Глава вторая МАТЕМАТИКА В ИГРАХ
ДОМИНО
Почему 28 костей домино можно выложить с соблюдением правил игры в одну непрерывную цепь?
Когда 28 костей домино выложены в цепь, на одном ее конце оказалось 5 очков.
Сколько очков на другом конце?
Ваш товарищ берет одну из костей домино и предлагает вам из остальных 27 составить непрерывную цепь, утверждая, что это всегда возможно, какая бы кость ни была взята. Сам же он удаляется в соседнюю комнату, чтобы не видеть вашей цепи.
Вы приступаете к работе и убеждаетесь, что товарищ ваш прав: 27 костей выложились в одну цепь. Еще удивительнее то, что товарищ, оставаясь в соседней комнате и не видя вашей цепи, объявляет оттуда, какие числа очков на ее концах.
Как может он это знать? И почему он уверен, что из всяких 27 костей домино составится непрерывная цепь?
Рис. 9 изображает квадратную рамку, выложенную из костей домино с соблюдением правил игры. Стороны рамки равны по длине, но не одинаковы по сумме очков: верхний и левый ряды заключают по 44 очка, остальные же два ряда - 59 и 32.
Рис. 9. Рамка из домино
Можете ли вы выложить такую квадратную рамку, все стороны которой заключали бы одинаковую сумму очков - именно 44?
Четыре кости домино можно выбрать так, чтобы из них составился квадратик с равной суммой очков на каждой стороне. Образчик вы видите на рис. 10: сложив очки на каждой стороне квадратика, во всех случаях получите 11.
Рис. 10
Рис. 11. Магический квадрат из домино
Можете ли вы из полного набора домино составить одновременно семь таких квадратов? Не требуется, чтобы сумма очков на одной стороне получалась у всех квадратов одна и та же; надо лишь, чтобы каждый квадрат имел на своих четырех сторонах одинаковую
На рис. 11 показан квадрат из 18 косточек домино, замечательный тем, что сумма очков любого его ряда - продольного, поперечного или диагонального - одна и та же: 13. Подобные квадраты издавна называются «магическими».
Вам предлагается составить несколько таких же 18-косточковых магических квадратов, но с другой суммой очков в ряду.
13 - наименьшая сумма в рядах магического квадрата, составленного из 18 костей. Наибольшая сумма - 23.
Вы видите на рис. 12. шесть косточек домино, выложенных по правилам игры и отличающихся тем, что число очков на косточках (на двух половинах каждой косточки) возрастает на 1: начинаясь с 4, ряд состоит из следующих чисел очков:
4; 5; 6; 7; 8; 9.
Такой ряд чисел, которые возрастают (или убывают) на одну и ту же величину, называется арифметической прогрессией. В нашем ряду каждое число больше предыдущего на 1; но в прогрессии может быть и любая другая «разность».
Рис. 12. Прогрессия на костяшках домино
Задача состоит в том, чтобы составить еще несколько 6-косточковых прогрессий.
ИГРА В «15», или ТАКЕН
Общеизвестная коробочка с 15 нумерованными квадратными шашками имеет любопытную историю, о которой мало кто из игроков подозревает. Расскажем о ней словами немецкого исследователя игр - математика В. Аренса.
«Около полувека назад - в конце 70-х годов - вынырнула в Соединенных Штатах игра в «15»; она быстро распространилась и, благодаря несчетному числу усердных игроков, которых она заполонила, превратилась в настоящее общественное бедствие.
То же наблюдалось по эту сторону океана, в Европе. Здесь можно было даже в конках видеть в руках пассажиров коробочки с 15 шашками. В конторах и магазинах хозяева приходили в отчаяние от увлечения своих служащих и вынуждены были воспретить им игру в часы занятий и торговли. Содержатели увеселительных заведений ловко использовали эту манию и устраивали большие игорные турниры. Игра проникла даже в торжественные залы германского рейхстага.
Рис. 13. Игра в «15»
«Как сейчас вижу в рейхстаге седовласых людей, сосредоточенно рассматривающих в своих руках квадратную коробочку», - вспоминает известный географ и математик Зигмунд Гюнтер, бывший депутатом в годы игорной эпидемии.
В Париже игра эта нашла себе приют под открытым небом, на бульварах, и быстро распространилась из столицы по всей провинции. «Не было такого уединенного сельского домика, где не гнездился бы этот паук, подстерегая жертву, готовую запутаться в его сетях», - писал один французский автор.
В 1880 г. игорная лихорадка достигла, по-видимому, своей высшей точки. Но вскоре после этого тиран был повержен и побежден оружием математики. Математическая теория игры обнаружила, что из многочисленных задач, которые могут быть предложены, разрешима только половина; другая не разрешима никакими ухищрениями.
Рис. 14. Самуэль Лойд, изобретатель игры в «15»