А как насчет употребления микроРНК животного происхождения, содержащихся в мясе, молоке и яйцах[7282]
? МикроРНК животного происхождения иногда могут усваиваться гораздо лучше, чем микроРНК растительного происхождения[7283]. Проблема заключается в том, что ученым гораздо сложнее отличить микроРНК животных, поступающие с пищей, от микроРНК, вырабатываемых нашим собственным организмом, поскольку они могут быть практически или полностью идентичны[7284].Одним из способов решения этой проблемы является генетическая инженерия «нокаутных» мышей, у которых ген определенной микроРНК «нокаутирован» – инактивирован или удален. Например, мышей с нокаутом микроРНК-451 поили кровью диких мышей, цыплят и свиней. Обнаружив, что микроРНК-451 циркулирует в их крови и выполняет свою регуляторную функцию, исследователи поняли, что микроРНК, попавшие в организм животных, действительно могут влиять на физиологию[7285]
.Если не ограничиваться мышами-вампирами, то можно ли провести подтверждающие эксперименты на людях? Это очень важный вопрос, поскольку в продуктах животного происхождения есть ряд микроРНК, способствующих развитию воспаления и рака, которые на 100 % совпадают с микроРНК в организме человека[7286]
. Даже если бы вы не смогли отличить микроРНК мяса от микроРНК человека, вы могли бы, по крайней мере, проверить, повышается ли уровень микроРНК в крови после употребления мяса. Наблюдение за тремя микроРНК, общими у коров и людей, после употребления говядины не выявило скачков в крови[7287], хотя биопсия прямой кишки показала изменение микроРНК в толстой кишке после употребления красного мяса[7288]. А вот куриные микроРНК после употребления яиц могут быть обнаружены в кровотоке человека.В исследовании «МикроРНК в куриных яйцах биологически доступны у здоровых взрослых и могут модулировать экспрессию мРНК в мононуклеарных клетках периферической крови», проведенном при финансовой поддержке Министерства сельского хозяйства США, добровольцев кормили сваренными вкрутую яйцами. Через 9 часов уровень микроРНК-181a и микроРНК-181b в крови поднялся примерно на 150 % и 300 % выше исходного уровня. Это сопровождалось подавлением валидированного гена-мишени miR-181b в лейкоцитах. Чтобы убедиться в том, что куриные микроРНК действительно попадают в кровь человека после употребления яиц, а не просто косвенно повышают уровень эндогенных микроРНК, исследователи смогли отследить попадание в кровь специфической для курицы микроРНК[7289]
.Больше всего доказательств, подтверждающих возможность межцарственной регуляции генов, было получено из литературы о молочных продуктах. Из всех исследованных жидкостей организма молоко содержит наибольшее количество микроРНК[7290]
. Оно является секреторным продуктом эпителиальных клеток молочной железы, которые выделяют в молоко экзосомы, содержащие миРНК[7291]. Согласно данным о грудном молоке человека, оно обладает иммуномодулирующим действием[7292], особенно в первые 6 месяцев лактации[7293]. Мы давно знаем, что грудное молоко содержит антитела и другие защитные вещества, отсутствующие в детских смесях, которые обеспечивают пассивный иммунитет и помогают развитию иммунной системы, но микроРНК могут придать дополнительную актуальность утверждению о том, что грудное вскармливание – это лучшее решение[7294].Детей не просто кормят грудью, их так программируют[7295]
. Молоко уже воспринимается не только как пища для младенцев, но и как сложнейшая коммуникационная система, управляющая ранним развитием[7296]. Например, уже более 10 лет мы знаем, что какой-то ингредиент в молоке предотвращает аллергию. Крысиное молоко предотвращает аллергию у детенышей крыс[7297]. МикроРНК могут помочь объяснить, почему грудное вскармливание, по-видимому, защищает детей от астмы[7298] и инфекций и приводит к повышению интеллекта по сравнению с кормлением молочными смесями[7299]. Если микроРНК молока могут так манипулировать физиологией младенца, то что произойдет, если мы будем пить молоко после отлучения от груди, будучи взрослыми, или даже пить молоко другого вида?Молоко панд и свиней, человека, коров и водяных буйволов имеет несколько общих высокоэкспрессируемых микроРНК[7300]
, но коровье молоко содержит также сотни других микроРНК[7301], около 1500[7302]. Поскольку большинство микроРНК молока инкапсулировано в экзосомах, они устойчивы к нагреванию. В то время как большинство экзосом и их содержимое разрушаются при кипячении или сверхвысокотемпературной обработке (используемой для производства сливок, пригодных для хранения), при промышленной пастеризации значительная часть микроРНК молока остается нетронутой[7303]. Большинство из них затем выживает в условиях пищеварения у взрослых[7304].