Читаем Живой кристалл полностью

В действительности, однако, когда средняя тепловая энергия kT меньше квантовой порции энергии h, некоторое малое количество атомов, вследствие случайного стечения обстоятельств, может иметь энергию, равную энергии одного кванта. С повышением температуры число таких атомов будет возрастать. Могут даже появиться атомы, энергия которых равна энергии двух и большего числа квантов. А это означает, что они (а с ними и кристалл) будут поглощать энергию и кристалл обнаружит ненулевую теплоемкость.

Здесь можно было бы привести расчет теплоемкости кристалла, основанный на описанной идее Эйнштейна. Не станем этого делать, обратим лишь внимание на физическое содержание результата расчета, естественно следующее из этой идеи. При низкой температуре (Т<< Т*) с ее понижением теплоемкость падает по причине, нам уже известной: между величиной и нулевым значением энергии нет ступеней энергетической лестницы, а число атомов, имеющих энергию h, убывает. А в области высоких температур (Т >> Т*) кристалл уже «забывает» об энергетической лестнице, так как ее шаг мал по сравнению с kT и она воспринимается не как лестница, а как гладкая наклонная плоскость. В силу вступает классическая закономерность «чем — тем», а с ней и закон Дюлонга и Пти.

Заслугу Эйнштейна переоценить трудно: он не только устранил кричащее противоречие между классическим представлением о теплоемкости твердых тел и результатами ее экспериментального исследования, не только внес очень существенную коррективу в классические представления о непременных признаках жизни кристалла. Он совершил нечто несравненно более значимое: привнес квантовые представления в теорию твердых тел.

Все сказанное Эйнштейном о теплоемкости твердых тел оказалось правдой, однако не вся правда была им сказана. Полученные Эйнштейном формулы, как выяснилось, качественно правильно отражали экспериментально найденные зависимости теплоемкости от температуры. А количественное совпадение теории с результатом эксперимента не достигалось. Его добился Петер Дебай через несколько лет после опубликования работы Эйнштейна.

Основную идею Эйнштейна Дебай сохранил. Он лишь дополнил ее предположением о том, что эйнштейновские «квантовые» маятники колеблются не независимо, они как бы связаны между собой, как, например, связаны отдельные пружины в матрасе: толкнешь любую из них, а колебаться начинают все.

Колебания сильно взаимодействующих атомов можно представить как совокупность слабо взаимодействующих волн, распространяющихся во всем объеме кристалла. «Волны» — в рассуждениях теоретиков шаг вперед по сравнению с представлением об отдельных атомах. Следующий шаг — переход от волн к частицам, точнее, к «квазичастицам». В основе этого перехода лежит идея (еще в середине 20-х годов сформулированная великим французским физиком Луи де Бройлем) о том, что каждой волне можно сопоставить частицу, энергия которой равна = hv = h/, где — скорость распространения волны, а — ее длина. Подчеркнем, что в интересующем нас случае речь, разумеется, идет не об истинной частице, а о некоторой фиктивной частице, которой предписана способность быть носительницей теплового возбуждения в кристалле.

В такой совокупности связанных маятников в процессе их колебаний будет распространяться множество волн различной длины. Дебай рассудил так: вместо того, чтобы описывать судьбу каждого из связанных маятников, проще проследить за распространяющимися волнами. А это можно сделать, сопоставив каждой волне, для которой характерна частота , некоторую фиктивную частицу, энергия которой hv. Эту не реальную, а «квазичастицу» физики называют фонон. Фотон — сгусток световой, а фонон — звуковой энергии, так как в твердом теле волна распространяется со скоростью звука. Фонон — квази, а не настоящая частица. Настоящую материализованную частицу можно было бы изъять из кристалла и поселить где-нибудь в ином месте, например в ином кристалле. А квазичастица существует лишь как возбуждение в твердом теле, а значит, удалить ее из кристалла нельзя. Она ведь не частица, она — придуманная теоретиком квазичастица. Она как бы не частица, а способ выражаться. Квазичастица — одно из фундаментальных представлений, лежащее в основе современной квантовой теории твердого тела. К образу квазичастицы физики-теоретики прибегают при описании практически всех свойств твердых тел: и тепловых, и электрических, и магнитных [1].


Вернемся, однако, к фононам. Так как в логике теоретиков фононы пришли на смену слабо взаимодействующим волнам, тепловую энергию кристалла можно считать суммой энергий отдельных фононов. Итак, у истока рассуждений — реальный кристалл, в конце рассуждений — газ свободных «квазичастиц». Это особый газ, существенно отличающийся от обычного классического газа. Дебай, создавая теорию газа, состоящего из фононов, учел температурную зависимость их свойств.

Задачу о теплоемкости твердого тела Дебай свел, таким образом, к задаче о теплоемкости совокупности квазичастиц — фононов.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное