Читаем Живой кристалл полностью

Приравняв энергию упругих напряжений, создаваемых в кристалле внешним воздействием, и энергию поверхностей, образующихся при хрупком разрушении, Гриффитс оценил ту прочность, которой должен был бы обладать кристалл. Воспроизведем его расчет, разумеется, в упрощенной форме. Вычислим вначале энергию, сосредоточенную в кубике твердого тела с размером ребра l, который, под действием силы F в направлении ее действия, изменил свой размер на величину l. Сопротивление кристалла деформированию увеличивается с ростом деформации, поэтому сочтем, что среднее значение силы, действующей на кристалл, приблизительно равно F/2. Вспомнив, что работа (или энергия) равна произведению силы на путь, энергию, запасенную в кристалле, определим соотношением

 

Приравняв упругую энергию поверхностной, Гриффитс нашел формулу, определяющую напряжение *, при котором кристалл должен разрушиться (т. е. его теоретическую прочность):

Итак, результат, к которому мы пришли, оказался следующим: ту прочность, которой, согласно расчету, должно обладать вещество, имеют лишь очень тонкие нити из этого вещества, а толстые нити имеют прочность, в 50 — 100 раз меньшую. Такое кричащее несоответствие между теоретической и реальной прочностью твердого тела не может быть обусловлено ошибкой расчета или эксперимента: слишком велико несоответствие, и слишком прозрачны и просты и расчет, и эксперимент. Здесь необходима оговорка. Расчет внушает доверие лишь в случае, если реальная ситуация соответствует той идеализированной, которая в расчете предполагается: твердое тело свободно от каких-либо дефектов, и все связи между атомами, которым надлежит быть разорванными, рвутся одновременно. А вот это, рассуждал Гриффитс, очевидно и не имеет места. Видимо, в реальном твердом теле — в его объеме и на поверхности — имеются микроскопические трещинки. Возможно, именно они и ответственны и за обнаруженное несоответствие теории и эксперимента, и за зависимость прочности нити от ее диаметра. Гриффитс был вынужден придумать дефект и поселить его в твердом теле для того, чтобы помирить теорию и эксперимент. В этом одна из основных забот теоретика — пытаться мирить теорию и эксперимент. Тем более, если теоретик и экспериментатор — одно лицо.

Читатель удивлен, его явно смущает словосочетание «придумать дефект», он, видимо, считает, что ничего придумывать не следует, что поступать надо совсем наоборот — «не поселять» в твердом теле придуманное, а, внимательно изучив структуру твердого тела, обнаружить дефект, наличие которого так резко понижает его прочность. Конечно, хорошо бы поступать так, как рекомендует читатель. Однако в его разумной рекомендации имеется одна логическая брешь. Если дефект будет непосредственно обнаружен, то, следовательно, в кристалле он присутствует. Если же он не будет обнаружен — это не значит, что его в кристалле нет. Это просто значит, что он не был обнаружен, и не более того! Именно такая трудность и встретилась Гриффитсу, не видевшему нужных ему трещин. В этом случае фантазия ученого должна домыслить необнаруженное в надежде на то, что со временем, когда экспериментальные методы станут более совершенными, можно будет убедиться в разумности домысла. Здесь в игру вступает такая тонкая материя, как интуиция ученого, его способность проникать в существо явлений природы, его фантазия, питающаяся знаниями, аналогиями, воспоминаниями, смелостью и независимостью суждений. Гриффитс явно был одарен этими ценностями, потому что, не видя ультрамикроскопических трещин, он их домыслил, а уже затем они были обнаружены и косвенно, и непосредственно.

Предложенный Гриффитсом энергетический подход к описанию разрушения хрупкого твердого тела можно использовать для определения размера той трещинки l*, которая окажется очагом разрушения, если к телу приложено определенное напряжение 0.

Если трещина имела размер l* или достигла этого размера, ее дальнейшее подрастание будет выгодным, так как при l l* упругая энергия с ростом l уменьшается быстрее, чем возрастает поверхностная.

Из приведенной оценки l* ~ 1 /20 следует, что с ростом приложенного напряжения размер опасной трещины быстро уменьшается. Та трещина, которая при данном напряжении могла существовать в кристалле, не обнаруживая себя, при немного большем напряжении перейдет в разряд развивающихся трещин, которые себя обнаруживают очень впечатляющим образом: из-за них кристалл рушится. Из нашей оценки l* следует, что в кристаллах, модуль упругости которых Е 1012 дин/см2, при напряжении 0 109 дин/см2 все те трещины, размер которых l 10-3 см, не должны развиваться, опасны лишь те трещины, размер которых превосходит 10-3 см. А вот при напряжении 0 1010 дин/см2 опасными окажутся трещинки, размер которых превосходит 10 -5 см.

Формулу, которая определяет величину l*, стоит использовать еще и для других оценок, прочтя ее для этого как бы в обратном направлении. Из этой формулы следует оценка напряжения, достаточного для того, чтобы тело, содержащее трещину с размером l*, разрушилось:

 

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное