Читаем Живой кристалл полностью

Примеры в научных доказательствах — вещь очень деликатная. Как известно, пример, согласующийся с утверждением, имеет силу лишь иллюстрации, а доказательной силы — никакой, а пример, противоречащий утверждению, имеет доказательную силу: он свидетельствует о том, что утверждение неверно. Скажем, полная корзина красных помидоров фактом своего существования не противоречит утверждению, «все помидоры красные», но и не доказывает его. А один зеленый помидор это утверждение начисто опровергает. И все же я приведу пример в надежде, что он поможет (!) читателю освоиться с мыслью о термодинамической оправданности беспорядка. Если средняя кинетическая энергия одной молекулы в идеальном газе kT/2, топ молекул имеют энергию пkT/2. Эта энергия не изменится, если объем газа увеличится, и, казалось бы, нет оправдания стремлению газа расширяться в пустоту. А между тем газ это самопроизвольно делает при первой же возможности. А оправдание есть и состоит оно в том, что, заняв большой объем, газ окажется в состоянии с большей степенью беспорядка, чем в малом объеме. И самопроизвольное возникновение беспорядка в кристалле, и самопроизвольное расширение газа в пустоту — следствия одной и той же термодинамически оправданной тенденции. Напомню: рассказанное — не доказательство, а всего лишь пример!

Коротко о структуре очагов беспорядка. Главным образом с точки зрения «прока» от них. В этом случае лучше вообще говорить не о структуре, а о величине энергетической флуктуации, необходимой для появления очага данного типа. Очевидно следующее: чем больше нарушение идеальной структуры кристалла в очаге, тем большая нужна флуктуация энергии и тем меньше таких очагов появится при данной температуре. Поэтому очаги значительного беспорядка (поры, трещины, границы) в кристалле самопроизвольно появляться не будут. В энергетических единицах они стоят дорог о и кристаллу противопоказаны, прока от них нет, одни расходы. А вот мелкие очаги беспорядка (лишний атом в междоузлии или вакантная позиция в узле решетки) в кристалле будут: стоят они недорого, а без очагов беспорядка, как мы выяснили, кристалл существовать не может.

Итак, в беспорядке есть прок! Однако прок проком, но должен все-таки существовать естественный предел этому беспорядку, иначе кристалл — образование упорядоченное — потеряет смысл, а с ним и право на существование.

Обсудим меру необходимого кристаллу беспорядка, избрав в качестве примера очага беспорядка в кристалле узел, не замещенный атомом, т. е. вакансию. Обсудим — значит попытаемся выяснить, сколько вакансий должно быть в кристалле при данной температуре, чтобы удовлетворить его потребность в «вакансионном беспорядке».

Вопрос надо уточнить, так как и крупинка в солонке — кристалл, и глыба каменной соли — кристалл. И поэтому следует говорить не о количестве вакансий; а об их концентрации, т. е. об отношении числа вакантных узлов nυ к числу всех узлов кристаллической решетки N0:


сυ = nυ /N0


Так как вакансия возникает вслед за появлением достаточной флуктуации энергии, у читателя может возникнуть опасение, что число вакансий все время будет возрастать — благо источники пустоты неисчерпаемы! Этого не произойдет, так как все те вакансии, без которых кристалл может обойтись, родившись, исчезнут! Сочтем,

что на вопросы «как?» и «куда исчезнут!׳» здесь отвечать не обязательно. Здесь важно лишь, что в сложное переплетении процессов рождения и исчезновения вакансий при данной температуре в кристалле автоматически поддерживается строго определенная, необходимая ему их концентрация. Именуют ее равновесной. С ростом температуры равновесная концентрация вакансий будет возрастать. Это совершенно подобно тому, что происходит в объеме под колпаком, где стоит открытый сосуд с водой. С поверхности воды некоторые молекулы испаряются, а иные конденсируются на нее, но при каждой данной температуре давление водяного пара под колпаком вполне определенное. Если считать, что образование одной вакансии предполагает необходимость во флуктуации энергии величины Uυ и если воспользоваться известным в физике законом (он называется экспоненциальным), который утверждает, что вероятность флуктуации энергии определенной величины Uравна е-U/kT, то концентрация вакансий определится формулой


cυ= е-Uυ/kT.


Для примера оценим значения cυ в золоте при двух температурах: комнатной (Т = 300 К) и температуре плавления (Т = 1336 К). Энергия образования вакансии в золоте Uυ = 1,6• 1 0-12 эрг. Помня, что константа Больцмана к = 1,38•10-16 эрг/К, легко получить интересующие нас величины: при комнатной температуре одна вакансия приходится на 1015 атомов, а при температуре плавления одна вакансия — на 104 атомов. Кристалл, как выясняется, довольствуется малым числом вакансий, но отказаться от них и не может, и не имеет нрава!

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука