квадр. сантиметр………………………… кв. см или см2
квадр. миллиметр……………………….. кв. мм или мм2
гектар…………………………………….. га
Повторительные вопросы
Как вычисляется площадь прямоугольника? Квадрата? – Сколько кв. см в кв. м? Сколько кв. мм в кв. м? – Что такое гектар? – Сколько гектаров в кв. км? Как сокращенно обозначают квадратные меры?
Применения
20. Требуется окрасить иол комнаты, изображенный на черт. 6. Размеры, обозначены в метрах. Сколько понадобится для этого материалов и рабочей силы, если известно, что для окраски одного кв. метра деревянных полов с замазкой щелей и сучьев по прежде окрашенному, за два, требуется (по Урочному Положению):
Маляров…………………………………….. 0,044
Олифы, килограммов…………………….… 0,18
Охры светлой, кг…………………………… 0;099
Замазки, кг…………………………………0,00225
Пемзы, кг………………………………….. 0,0009.
Р е ш е н и е. Площадь пола равна 8 ?
12 = 96 кв. м.Расход материалов и рабочей силы таков
Маляров. . . . . . . . 0,044 ? 96 = 4,2[3]
Олифы. . . . . . . . 0,18 ? 96= 17 кг
Охры. . . . . . . . . 0,099 ? 96 – 9,9 кг
Замазки. . . . . . . . 0.00225 ? 96 = 0,22 кг
Пемзы. . . . . . . . . 0,0009 ? 96 = 0,09 кг.
21. Составьте ведомость расхода рабочей силы и материалов для оклейки обоями комнаты предыдущ. задачи. На оклейку стен простыми обоями с бордюрами требуется (по Уроч. Положению) на кв. метр:
Маляров или обойщиков………………………… 0,044
Обоев (шир. 44 см) кусков……………………… 0,264
Бордюр (по расчету)
Крахмала граммов………………………………. 90.
Р е ш е н и е – по образцу, указанному в предыдущей задаче. Заметим лишь, что при подсчете необходимого количества обоев на практике отверстия стен из их площади не вычитают (так как при пригонке фигур в смежных полотнищах часть обоев теряется).
§ 26. Площадь треугольника
Рассмотрим сначала, как вычисляется площадь п р ям о у г о л ь н о г о треугольника. Пусть требуется определить площадь треугольника
Пусть теперь требуется определить площадь треугольника косоугольного (т. е. не прямоугольного), – напр.
Рассуждение это нельзя прямо применить к треугольнику с тупым углом (черт. 92), потому что перпендикуляр CD встречает не основание
Итак, во всех случаях площадь треугольника равна половине произведения любого его основания на соответствующую высоту.
Отсюда следует, что треугольники с равными основаниями и высотами имеют одинаковые площади, или, как говорят,
р а в н о в е л и к и.
Равновеликими вообще называются фигуры, имеющие равные площади, хотя бы сами фигуры не были равны (т. е. не совпадали при наложении).
Повторительные вопросы
Что называется высотою треугольника? Основанием треугольника? – Сколько высот можно провести в одном треугольнике? – Начертите треугольник с тупым углом и проведите в нем все высоты. – Как вычисляется площадь треугольника? Как выразить это правило формулой? – Какие фигуры называются равновеликими?
Применения
22. Огород имеет форму треугольника с основанием 13,4 м и высокою 37,2 м… Сколько (по весу) требуется семян, чтобы засадить его капустой, если на кв. м идет 0,5 грамма семян?
Р е ш е н и е. Площадь огорода равна 13,4 ? 37,2 = 498 кв. м.
Семян потребуется 250 г.
23. Параллелограмм разбивается диагоналями на 4 треугольные части. Какая из них имеет наибольшую площадь?
Р е ш е н и е. Все 4 треугольника равновелики, так как имеют равные основания и высоты.
§ 27. Площадь параллелограмма