Читаем Животные анализируют мир полностью

В природе есть виды ацетобулярии со сплошным и изрезанным зонтиком. Это дает возможность проследить, как ядро клетки влияет на формообразование зонтика. Если у таких ацетобулярий отрезать зонтики и поменять ядра, то всегда восстанавливается зонтик той формы, какому виду принадлежит ядро. И опять не снят вопрос: само ли ядро полностью заведует процессами формообразования зонтика или только шифрует пространственный код?

Проведенные опыты показывают, что ядро — один из «живых приборов» в клетке, следящих за ее пространственной формой. Но как согласуется это управление с формой, когда вместе оказываются тысячи клеток, кто или что дирижирует ими таким образом, чтобы вместе они работали как единая ткань или, более того, как орган и даже организм? Здесь начинается область научных догадок и предположений.

Ученые, занимающиеся раскрытием тайн дифференцировки клеток, прослеживают это на наиболее ранних стадиях развития организмов, когда клеток еще мало и можно как-то разобраться в их взаимосвязях, или же берут простые модельные системы и на них пытаются раскрыть принципы биокибернетики развития. Ибо даже сложнейшие кибернетические системы, применяемые в настоящее время человеком, далеко уступают отточенным в процессе эволюции механизмам управления в живом, а искусственных систем, кодирующих пространственную информацию, человек вообще пока не создал, если не считать голографии. Однако есть определенное отличие между голограммой и пространственным кодом живого. Каждая часть голограммы позволяет получить то же по величине изображение, но менее четкое, а каждая часть зародыша на самых ранних стадиях развивается в целый организм, только меньших размеров. На языке физики это звучало бы так — каждая часть голограммы может давать четкое объемное изображение, только меньших размеров. Но этого пока еще не создано.

А вот живые организмы в этом отношении творят чудеса. Проведем простой опыт. Под микроскоп положим оплодотворенное яйцо морского ежа — любимый объект эмбриологов. Яйцо вот-вот начнет дробиться. Ядро разделилось, а через некоторое время в оболочке яйца начинает появляться перетяжка. Образовалось две клетки — первые две клетки организма, называемые бластомерами. Теперь начнем экспериментировать. Отделим друг от друга эти две первые клеточки. У морского ежа это сделать просто: достаточно в пробирке с морской водой встряхнуть их как следует — и бластомеры разойдутся. Что же будет дальше? Прекратится дробление? Или из разделенных бластомеров разовьется по половинке животного? Ничего подобного. Через положенный срок из каждого бластомера сформируется целый, нормальный по форме морской еж, только размером в два раза меньше. Вот здесь-то и проявляется принцип «биологической голографии».

Взяв другое яйцо, дождемся, пока оно разделится на четыре клетки, и снова отделим друг от друга бластомеры. Опять получим четыре нормальных по форме морских ежа, но еще меньших размеров. А если бы клетки остались вместе, то каждая из них дала бы только четверть животного.

Итак, контакт клеток. Вопрос вопросов в формообразовательных процессах. Это он привел к ошибке немецкого эмбриолога Вильгельма Ру — он специальной иглой выжигал один из двух бластомеров лягушачьего яйца. Оставшийся бластомер, хотя еще и делился некоторое время, формируя «половинчатую» личинку (!), в конце концов погибал. Поэтому Ру был убежден, что один бластомер сам по себе нежизнеспособен. Он не знал, что достаточно было тех крошечных обгоревших остатков разрушенного бластомера, чтобы другой бластомер воспринимал себя как половину зародыша. Это еще один принцип «биологической голографии» — даже незначительная часть клетки, контактирующая с целой, воспринимается как равный по формообразовательным процессам партнер. Стоило только аккуратно, волоском, разделить бластомеры — каждый из них давал нормального головастика.

Но продолжим опыт с морским ежом. Подождем, пока яйцо разделится на восемь бластомеров (рис. 11), и встряхнем пробирку. На этот раз ни из одного бластомера не получится нормальное животное. Каждый из восьми некоторое время будет делиться дальше, но потом погибнет. Значит, вот оно — начало, когда клетки становятся неодинаковыми, то есть дифференцируются. Попробуем разобраться, что же в них произошло.

Рис. 11.Дробление яйца морского ежа (А — F - стадии дробления)


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже