Можно предположить, что большинство существ, ощущающих электрические поля и их изменение в природе, способны воспринимать информацию посредством взаимодействия природных полей с собственным электрическим полем организма. В 1967 году ленинградскому физиологу П. И. Гуляеву с помощью специальных зондирующих усилителей удалось зарегистрировать электрические поля вокруг нервов мышц, сердца лягушки, а также вокруг человека на расстоянии десяти — двадцати пяти сантиметров. Электрические поля зарегистрированы также вокруг летящего комара и шмеля. В дальнейшем будет рассказано о специальных рецепторах электрического чувства у рыб, у них эта система наиболее совершенна.
Водная среда, в которой обитают рыбы, обладает высокой электропроводностью. По этой причине токовые поля, вырабатываемые живыми генераторами, достигают электрорецепторов других рыб почти без потерь. Появляется возможность электролокации и передачи электрических сигналов на несколько метров в реках и морях, где зрение часто не играет главной роли, если вода мутная.
Всех электрических рыб можно разделить на сильноэлектрических и слабоэлектрических. Эта классификация связана с работой у них «генераторов электрических импульсов». Если за основу взять способность рыб к восприятию электрических импульсов, то можно увидеть, что одни рыбы очень чувствительны к электричеству, у них есть специальные электрические рецепторы, другие рыбы менее чувствительны к токовым полям — обычно у этих видов рыб отсутствуют специальные электрорецепторы. Рыбы с электрорецепторами улавливают импульсы до сотых долей милливольта на сантиметр, рыбы же без электрорецепторов менее чувствительны.
Рис. 6.
Строение электропластинок:А — скат; Б — звездочет; В — электрический угорь; Г — нильский слоник;
1 — электрическая пластина; 2 — соединительная ткань; 3 — сосочек; 4 — кровеносный сосуд; 5) нервы
Что же собой представляют электрические органы у рыб и каково их гистологическое строение? Как правило, это видоизмененная мышечная ткань. Электрические клетки очень сильно уплощены, поэтому их и называют электрическими пластинками. Например, у электрического угря толщина таких пластинок всего десять микрон. Их можно увидеть только сбоку в световой микроскоп, а сверху они напоминают шестиугольник площадью примерно один сантиметр. Такое устройство увеличивает площадь мембраны клетки, ведь именно на ней вырабатываются во всех живых клетках электрические потенциалы. И если обычная живая клетка может создать на своей мембране потенциал, равный тридцати милливольтам, то электрическая пластинка создает потенциал до ста пятидесяти милливольт. Следовательно, основной элемент «электрической батареи» — видоизмененная мышечная клетка. Эти электрические пластины собраны в столбики, уложены одна на другую и соединены последовательно, как элементы любой электрической батареи. Ряды столбиков, контактируя друг с другом, образуют тип параллельного электрического соединения. У разных видов электрические пластинки могут отличаться (рис. 6), но принцип строения электрических органов сходен. Правда, полярность во многом зависит от ориентации электрических столбиков. Если столбики ориентированы лицевой стороной к голове рыбы, то голова становится носителем отрицательного заряда относительно хвоста. У других видов столбики ориентированы в сторону хвоста, следовательно, у головы положительный заряд (рис. 7).
Рис. 7.
Полярность электрических зарядов у различных видов рыб (закрашенные места — расположение электрических органов):1) электрический скат с главным (А) и вспомогательным (Б) электрическими органами;
2) обыкновенный скат;
3) электрический сом;
4) электрический угорь: главный орган спереди, вверху (А); орган Сакса сзади (Б); орган Хантера снизу (В);
5) рыба-нож;
6) гимнарх;
7) гиатонемус;
8) звездочет;
9) ископаемая рыба, верхний силур