Читаем Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта полностью

Предположим, что у вас есть черно-белые мегапиксельные фотографии, и вам их надо разложить в две стопки – например, отделив кошек от собак. Если каждый из миллиона пикселей может принимать одно из, скажем, 256 значений, то общее количество возможных изображений равно 2561000000, и для каждого из них мы хотим вычислить вероятность того, что на нем кошка. Это означает, что произвольная функция, которая устанавливает соответствие между фотографиями и вероятностями, определяется списком из 2561000000 позиций, то есть числом большим, чем атомов в нашей Вселенной (около 1078). Тем не менее нейронные сети всего лишь с тысячами или миллионами параметров каким-то образом справляются с такими классификациями довольно хорошо. Как успешные нейронные сети могут быть “дешевыми” в том смысле, что от них требуется так мало параметров? В конце концов, вы можете доказать, что нейронная сеть, достаточно маленькая для того, чтобы вписаться в нашу Вселенную, потерпит грандиозное фиаско в попытке аппроксимировать почти все функции, преуспев лишь в смехотворно крошечной части всех вычислительных задач, решения которых вы могли бы от нее ждать.

Я получил огромное удовольствие, разбираясь с этой и другими, связанными с ней, загадками вместе со студентом по имени Генри Лин. Среди разнообразных причин испытывать благодарность к своей судьбе – возможность сотрудничать с удивительными студентами, и Генри – один из них. Когда он впервые зашел в мой офис и спросил, хотел бы я поработать с ним, я подумал, что, скорее, мне надо было бы задавать такой вопрос: этот скромный, приветливый юноша с сияющими глазами из крошечного городка Шревепорт в штате Луизиана уже успел опубликовать восемь научных статей, получить премию Forbes 30-Under-30 и записать лекцию на канале TED, получившую более миллиона просмотров – и это всего-то в двадцать лет! Год спустя мы вместе написали статью, в которой пришли к удивительному заключению: вопрос, почему нейронные сети работают так хорошо, не может быть решен только методами математики, потому что значительная часть этого решения относится к физике.

Мы обнаружили, что класс функций, с которыми нас познакомили законы физики и которые, собственно, и заставили нас заинтересоваться вычислениями, – это удивительно узкий класс функций, потому что по причинам, которые мы все еще не полностью понимаем, законы физики удивительно просты. Более того, крошечная часть функций, которую могут вычислить нейронные сети, очень похожа на ту крошечную часть, интересоваться которыми нас заставляет физика! Мы также продолжили предыдущую работу, показывающую, что нейронные сети глубокого обучения (слово “глубокое” здесь подразумевает, что они содержат много слоев) гораздо эффективнее, чем мелкие, для многих из этих функций, представляющих интерес. Например, вместе с еще одним удивительным студентом MIT, Дэвидом Ролником, мы показали, что простая задача перемножения n чисел требует колоссальных 2n нейронов для сети с одним слоем и всего лишь около 4n нейронов в глубокой сети. Это помогает объяснить не только возросший энтузиазм среди исследователей AI по отношению к нейронным сетям, но также и то, зачем эволюции понадобились нейронные сети у нас в мозгу: если мозг, способный предвидеть будущее, дает эволюционное преимущество, в нем должна развиваться вычислительная архитектура, пригодная для решения именно тех вычислительных задач, которые возникают в физическом мире.

Теперь, когда мы знаем, как нейронные сети работают и как вычисляют, давайте вернемся к вопросу о том, как они могут учиться. В частности, как может нейронная сеть улучшать свои вычислительные способности, обновляя состояние своих синапсов.

Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука