Описанное выше многокомпонентное устройство дыхательной цепи, помимо обеспечения высокой стехиометрии Н+/О2, имеет еще ряд дополнительных преимуществ. Прежде всего, это придает ей известную гибкость в использовании субстратов с разными окислительновосстановительными потенциалами. Восстановительные эквиваленты могут поступать в дыхательную цепь на различных ее уровнях в зависимости от редокс-потенциала окисляемого субстрата. Если этот потенциал оказывается меньше, равен или лишь немногим больше -320 мВ (редокс-потенциал пары NADH/NAD+), то в окислении такого субстрата может участвовать вся дыхательная цепь. Именно так окисляется большинство субстратов дыхания. Если редокс-потенциал субстратов окисления намного отрицательней такового пары NADH/NAD+, то в систему переноса электронов может быть включен специальный механизм накопления энергии еще до дыхательной цепи. Такого типа реакции относят к разряду процессов трансформации энергии на уровне субстрата, или субстратного фосфорилирования. Если редокс-потенциал субстрата значительно более положительный, чем у пары NAD+/NADH, то восстановительные эквиваленты с такого субстрата переносятся на средний или конечный участок дыхательной цепи. Так окисляется один из субстратов цикла Кребса — сукцинат (редокс-потенциал +30 мВ), а также ацил-СоА — субстрат первой оксидоредукции в системе β-окисления жирных кислот. И сукцинат, и ацил-СоА-дегидрогеназы подают электроны в дыхательную цепь, минуя комплекс I, т. е. переносят электроны сразу на убихинон. В очень редких случаях редокс-потенциал окисляемого субстрата более положителен, чем даже у C0Q. Тогда восстановительные эквиваленты входят в цепь на уровне цитохрома с, так что только цитохромоксидазный генератор участвует в трансформации энергии. Примером может служить окисление аскорбиновой кислоты у животных или окисление метанола, ионов Fe2+ или нитрита у различных бактерий.
Приложение 4. Активные формы кислорода. Природа АФК и пути их образования в клетке
Почти весь кислород, поглощаемый живыми организмами, превращается в воду. Это происходит в результате реакции молекулы О2 с 4e- и 4H+. Однако небольшая доля поглощенного О2, обычно не превышающая 12 %, дает вместо воды анион супероксида (одноэлектронное восстановление О2 до радикала О2·-) или Н2О2 (двухэлектронное восстановление О2 до аниона пероксида O22-). Этот, казалось бы, незначительный в общем балансе дыхания процесс играет важнейшую роль в регуляции физиологических функций организма и даже его судьбе. Дело в том, что анион супероксида и Н2О2 могут превращаться в АФК, а именно в радикалы либо пергидроксила (НО2·), либо гидроксила (ОН·), а также в пероксинитрит (ONOO-), способный давать радикал ·ONOO, синглетный кислород (1O2) или все тот же ОН· (рис. П-4.1).
В свою очередь, АФК атакуют самые различные компоненты клетки, включая ДНК, РНК, белки и липиды. Некоторые из АФК настолько агрессивны как окислители, что даже небольшой их доли в общем потреблении кислорода хватает для проявления вредоносного действия, последствия которого могут оказаться трагическими для митохондрии, клетки и даже для организма в целом. Ведь если 1 % от тех 400 л О2, которые поглощает в день взрослый человек среднего веса, пойдут на образование не воды, а АФК, то это будет означать продукцию 4 л супероксида в день. Нетрудно представить себе последствия, если учесть, что такой продукт дальнейшего превращения супероксида как радикал гидроксила может соперничать по токсичности с «хлоркой», применяемой при дезинфекции. Первоначально считалось, что образование АФК — неизбежная «расплата» за аэробный образ жизни, поскольку мелкие, незаряженные и довольно гидрофобные молекулы О2, свободно проникающие через мембраны и даже накапливающиеся в них, чисто химически (неферментативно) могут окислять редокс-группы коферментов и белков, способные к одноэлектронному восстановлению кислорода. К таким группам относят полувосстановленные (семихинонные) формы убихинона, пластохинона, менахинона, флавинов, а также [Fe-Sj-кластеры негемовых железопротеидов с редокс-потенциалами, близкими к таковому пары супероксид/кислород. Однако многочисленные публикации последних лет убедительно свидетельствуют о том, что если даже АФК и служат побочными продуктами метаболизма, то, тем не менее, их образование и уборка тщательно контролируются организмом. В результате концентрация АФК в организме может варьировать на порядки за счет работы специальных регулирующих систем.