Поразительное, почти не известное замечание Кантона, по-видимому, доказывает, что уже в начале семидесятых годов он ясно понимал значение зарождавшихся у него идей, а также сопротивление, которое они должны вызвать; в то время исследования о тригонометрических рядах только что привели его к актуальной бесконечности, а первая его работа, посвященная теории множеств в узком смысле [10], еще не была опубликована. Намереваясь сделать доклад в Обществе Естествоиспытателей города Галле для которого, естественно, следовало выбрать общедоступный предмет, он остановился на теории вероятностей, которой занимался уже в течение нескольких лет. И вот, в докладе, состоявшемся б декабря 1873 г., он замечает по поводу француза де Мере, оспаривавшего авторитет Паскаля в одном вопросе теории вероятностей: «Как я полагаю, шевалье де Mepe может послужить предостерегающим примером всем противникам точного исследования, какие встречаются во все времена и повсюду; ибо с ними также может приключиться, что именно в том месте, где они пытаются нанести науке смертельные раны, вскоре расцветет перед их взором новая ветвь, возможно, плодотворнее прежних − как теория вероятностей перед взором шевалье де Мере». Отметим еще, что в более поздних письмах к Миттаг-Лефлеру Кантор постоянно называет Кронеккера псевдонимом «г-н фон Мере».
В противоположность Кронеккеру, Вейерштрасс уже тогда проявил полное понимание идей своего прежнего ученика. Он заинтересовался уже докладом в семинаре, где тот, еще будучи студентом, располагал рациональные числа в последовательность; точно так же, после недолгой первоначальной озадаченности, он очень быстро оценил сообщенное ему в 1873 году понятие счётности в его общем виде, и сразу воспользовался счётностью алгебраических чисел в одном вопросе, касающемся действительных функций[7]. Далее Кантор по предложению Вейерштрасса впервые применил понятие счетности к анализу (в работе [8]), и обратно, канторова теория объема в [13] побудила Вейерштрасса заняться теорией действительных функций[8].
С работой [11] тесно связана, и в некотором смысле противостоит ей, работа [12], в которой предпринята попытка выяснить значение непрерывности для понятия размерности; идея эта, по существу, возникла из переписки с Дедекиндом. Как известно, теорема об инвариантности размерности, о которой идет речь в этом (недостаточном) доказательстве, была строго обоснована лишь Л. Э. И. Брауэром много десятилетий спустя.
Начало восьмидесятых годов было временем интенсивнейшего творчества Кантора, могучего, переливающегося через все видимые границы развертывания его гениальных идей; но тогда же произошел тяжелый кризис в его жизни, не покинувший его до конца.
Работа [13], опубликованная в шести частях в 1879−84 годах, принадлежит к тем историческим явлениям, когда совершенно новая мысль, открывающая целую эпоху и полностью противоречащая воззрениям прошлого и настоящего, пробивается и кристаллизуется со все возрастающей отчетливостью, лишь постепенно осознаваемая в своей смелости и новизне самим ее творцом. В 1870 году ему впервые является идея трансфинитных чисел; в 1873 году он постигает значение
Редакция “Mathematische Annalen” снискала высокую заслугу, открыв страницы своего журнала идеям, решительно неприемлемым для математического и философского мира того времени, которым еще предстояло более десятилетия ожесточенно бороться за свое признание.