Чтобы разобраться в этой проблеме, Джонджо обратился к результатам экспериментов с ферментами, описанных в главе 3. Как вы помните, предположение о роли туннелирования протонов в реакциях с ферментами было высказано после того, как был обнаружен «кинетический изотопный эффект». Если ускорение реакции с участием фермента обусловлено квантовым туннелированием, то при замене ядра атома водорода (одиночного протона) на ядро дейтерия (содержащего протон и нейтрон) реакция замедлится, поскольку масса частицы, совершающей туннелирование, удвоится. В настоящий момент Джонджо пытается выяснить, действует ли тот же принцип при возникновении мутации, проверяя его на частоте мутаций в дейтерированной воде D2
O. Пока мы писали эту книгу, эксперименты показали, что после замены обычного ядра водорода ядром дейтерия частота мутаций возросла. Однако следует проделать еще немало работы, чтобы подтвердить обусловленность данного эффекта квантовым туннелированием, поскольку замена обычного водорода дейтерием может воздействовать на многие другие биомолекулярные процессы, что, в свою очередь, может вызвать мутации, не обусловленные квантовомеханическими явлениями.Джим сосредоточился на изучении того, насколько возможно, исходя из теоретических обоснований, квантовое туннелирование протонов в двойной спирали ДНК. Когда физик-теоретик берется за рассмотрение сложной проблемы, он обычно создает ее упрощенную модель, поддающуюся математическому описанию и сохраняющую основные свойства исследуемой системы или процесса. Такие модели могут со временем достигать высокой степени сложности, поскольку ученый постоянно дополняет их новыми данными, достраивает новые элементы с целью достичь максимального сходства с реальной моделируемой ситуацией.
В нашем случае модель, построенная для первоначального математического анализа, представляет собой шарик (символизирующий протон), подвешенный на пружинах, прикрепленных к стенам (рис. 7.4).
Рис. 7.4.
Протон в водородной связи, соединяющей два парных основания ДНК, можно представить в виде шарика на двух пружинах, качающегося из стороны в сторону. Он имеет два возможных стабильных положения, смоделированных на основе явления двойной потенциальной ямы. Левая яма (соответствующая обычному положению протона при отсутствии мутации ДНК) немного глубже правой (соответствующей таутомерическому положению), поэтому протон предпочитает находиться в левой ямеКаждая из пружин тянет шарик на себя. Шарик пытается найти положение, в котором тянущая сила обеих пружин уравновешивается. Если одна из пружин натянута туже (менее упругая), то шарик будет находиться ближе к той стене, к которой закреплена эта тугая пружина. И все же в тугой пружине должен быть некий «задел упругости», необходимый для того, чтобы шарик мог оказаться в менее стабильном положении у другой стены. Это соответствует явлению, которое в квантовой физике известно как
Безусловно, нарисовать картинку гораздо проще, чем разработать математическую модель, которая точно описывала бы исследуемую ситуацию. Чтобы понять поведение протона, необходимо очень точно представлять форму потенциальной ямы, или карту энергетической поверхности. Это не такая простая задача, поскольку форма потенциальной ямы зависит от многих переменных. Дело не только в том, что водородная связь является элементом огромной, сложной структуры — молекулы ДНК, состоящей из сотен или даже тысяч атомов. Следует также учитывать и то, что протон погружен в теплую ванну — внутри клетки его окружают молекулы воды и другие жидкие химические соединения. Кроме того, молекулярные вибрации, тепловые флуктуации, химические реакции с участием ферментов, а также ультрафиолетовое и радиоактивное излучение могут напрямую и косвенно влиять на состояние и поведение водородных связей ДНК.