Рис. 8.5.
Декогерентность в квантовом компьютере, вызванная, как представляется, спутыванием нитей кубитов со скоплением нитей внешней среды. Это всячески сдвигает и растаскивает кубиты, и они больше не реагируют на связи в своей собственной запутанностиКвантовые физики делают все возможное, чтобы поддерживать когерентность в запутанных кубитах, работая с чрезвычайно разреженными и тщательно контролируемыми физическими системами, кодируя кубиты в небольшое количество атомов, охлаждая систему на грани абсолютного нуля и тщательно изолируя оборудование для недопущения влияния окружающей среды. При таких подходах они получили значимые результаты. В 2001 году ученым из IBM и Стэнфордского университета удалось построить семикубитный «пробирочный квантовый компьютер», который мог реализовать сложный код под названием «алгоритм Шора», названный в честь математика Питера Шора, разработавшего его в 1994 году специально для запуска на квантовом компьютере. Алгоритм Шора кодирует очень эффективный способ разложения чисел на множители (устанавливающий, какие простые числа должны быть перемножены для получения требуемого числа). Это был огромный прорыв, разошедшийся по заголовкам научных изданий всего мира; на начальном этапе работы этот квантовый компьютер-новичок смог лишь вычислить простые множители числа 15 (3 и 5, если вам интересно).
За последнее десятилетие некоторые из ведущих физиков, математиков и инженеров упорно трудились, чтобы построить более крупные и качественные квантовые компьютеры, но прогресс был скромным. В 2011 году китайские исследователи сумели факторизовать число 143 (13 × 11), используя только четыре кубита. Как и американцы до них, китайская команда использовала систему, в которой кубиты были закодированы в спиновых состояниях атомов. Совершенно иной подход был впервые предложен канадской компанией D-Wave — они кодируют кубиты в движении электронов в электрических цепях. В 2007 году компания заявила, что разработала первый коммерческий 16-кубитный квантовый компьютер, способный решить головоломку судоку и другие задачи по сличению с образцом и оптимизации. В 2013 году НАСА, Google и Ассоциация университетов по космическим исследованиям (USRA) сообща приобрели (за неизвестную сумму) 512-кубитную машину, построенную D-Wave, которую НАСА планирует использовать для поиска экзопланет, то есть вращающихся вокруг не нашего Солнца, а далеких звезд. Однако задачи, до сих пор решаемые компанией, все были в пределах досягаемости обычной компьютерной мощности, и многие эксперты по квантовым вычислениям не уверены, что технология D-Wave является действительно квантовым вычислением или — даже если это так — что этот проект будет работать быстрее, чем классический компьютер.
Какой бы подход экспериментаторы ни выбирали, задачи, стоящие перед ними в превращении нынешнего зарождающегося поколения квантовых компьютеров в нечто полезное, остаются тяжелыми. Самая большая проблема — наращивание. Удвоение кубитов удваивает мощность квантового вычисления, но также и удваивает сложность поддержания квантовой согласованности и запутанности. Атомы должны быть холоднее, экранирование должно быть более эффективным, и становится все труднее и труднее поддерживать когеренцию дольше, чем несколько триллионных долей секунды. Декогеренция происходит задолго до того, как компьютеру удается завершить даже простейший расчет. (Хотя на момент написания этой работы при комнатной температуре квантовая когерентность ядерных спиновых состояний достигла впечатляющих 39 минут[153]
.) Но, как мы обнаружили, живым клеткам действительно удается сдерживать декогеренцию достаточно долго, чтобы транспортировать экситоны в фотосинтетических комплексах, или электроны и протоны в ферментах. Можно ли подобным образом сдерживать декогеренцию в центральной нервной системе, позволяя осуществляться квантовым вычислениям в головном мозге?Расчеты с микротрубочками?
Первоначальный аргумент Пенроуза о том, что мозг является квантовым компьютером, пришел с довольно неожиданного направления — из известного (по крайней мере в математических кругах) ряда теорем о неполноте, выдвинутых австрийским математиком Куртом Геделем. Эти теоремы вызвали сильное удивление у математиков 1930-х годов, которые уверенно приступили к программе определения действенного набора математических аксиом, способных доказать, что истинные утверждения истинны, а ложные заявления ложны — то есть вся арифметика внутренне согласованна и свободна от каких-либо внутренних противоречий. Звучит так, будто это положение волнует только математиков или философов, однако это было и остается большим вопросом для логики. Теоремы Геделя о неполноте показали, что такая попытка была обречена на провал.