Этот удивительный результат является еще одним ярким примером того, что живые организмы, получающие жизненные силы из квантового мира, обладают способностями, которые отсутствуют у неодушевленных макроскопических объектов. Безусловно, для того, чтобы такой смелый проект осуществился, необходима квантовая когерентность. Однако совсем недавно, в июле 2014 года, команда ученых из Нидерландов, Швеции и России опубликовала сенсационные результаты. Они обнаружили квантовое биение в растительном фотосинтетическом реакционном центре II[186]
и заявили, что эти центры функционируют как «квантовые световые ловушки»[187]. Не забывайте о том, что фотосинтетические реакционные центры появились между двумя и тремя миллиардами лет назад. Похоже на то, что на протяжении почти всей истории нашей планеты растения и бактерии пользовались встроенными квантовыми паровыми машинами (процесс настолько сложный и хитроумный, что нам еще очень далеко до его искусственного воспроизведения), чтобы передавать энергию углероду. Так была создана вся биомасса Земли, в которой сформировались бактерии, растения, динозавры и, разумеется, мы. На самом деле мы до сих пор пользуемся древнейшей квантовой энергией в виде энергетических ресурсов, которые греют наши дома, заводят машины и поддерживают всю современную промышленность. Невозможно переоценить преимущества, которые современные технологии человечества получают от древнейших природных технологий квантового мира.Итак, в фотосинтезе шум, вероятно, используется как для повышения эффективности перемещения экситонов к реакционному центру, так и для захвата энергии солнечного света, как только он попадает в реакционный центр. Однако способность превратить молекулярный порок (шум) в квантовую добродетель присуща не только фотосинтезу. В 2013 году группа исследователей из Манчестерского университета под руководством Найджела Скраттона (об экспериментах, проведенных этой командой, связанных с туннелированием протона в ферментах, мы говорили в главе 3) заменила обычные атомы в ферменте на более тяжелые изотопы. В результате цепочки молекул белка потяжелели и стали совершать колебания (производить цветной шум) на разных частотах. Ученые обнаружили, что туннелирование протона и активность фермента в целом нарушены в ферменте с тяжелыми изотопами[188]
, из чего следует, что в обычном состоянии при наличии более легких атомов колебания белковой цепи способствуют эффективному туннелированию и активности фермента. Похожие результаты (в экспериментах с другими ферментами) были получены группой ученых под руководством Джудит Клинман из Калифорнийского университета[189]. Итак, молекулярный шум не только активно участвует в фотосинтезе, оказывая влияние на его протекание, но и, по всей видимости, играет важную роль в побуждении фермента к активности. Напомним, что ферменты являются движущими силами жизни, благодаря которым возможно существование любой отдельно взятой молекулы из тех, что содержатся в клетках всех живых организмов нашей планеты. Вполне вероятно, что ключевое значение для поддержания жизни на Земле имеют «приятные» молекулярные вибрации.Жизнь на квантовом краю классической бури
Корабль на море. Буря, гром и молния.
Дают ли все эти новые открытия ответ на вопрос о природе жизни, который несколько десятков лет назад сформулировал Шредингер? Мы приняли во внимание его тезис о том, что жизнь — это система, в которой преобладает порядок, пронизывающий все ее уровни — высокоорганизованных макроскопических организмов, бурного термодинамического океана молекул, из которых состоят макроскопические объекты, и, наконец, квантового уровня — самого основания жизни (см. рис. 10.1). Ключевое значение имеет тот факт, что механизм жизни настроен и сбалансирован настолько тонко, что последствия событий, происходящих на квантовом уровне, могут проявляться в мире видимых объектов, как и предсказывал Паскуаль Йордан еще в 1930-е годы. Подобная чувствительность макроскопического уровня к явлениям квантового мира характерна только для живой материи и позволяет механизму жизни использовать квантовые явления (туннелирование, когерентность, запутанность частиц) в наших с вами интересах.