Таким образом, наличие сильного кинетического изотопного эффекта может свидетельствовать о том, что механизм реакции — путь от реагирующих веществ до продуктов — подразумевает квантовое туннелирование. Однако это не единственно возможный вывод, поскольку эффект может быть обусловлен и классическими химическими явлениями, не связанными с законами квантовой механики. Но если в ходе реакции имеет место именно квантовое туннелирование, реакция должна определенным образом отреагировать на изменение температуры: ее темп перестает ускоряться и выравнивается при низкой температуре, как и показал опыт Де-волта и Чанса в случае туннелирования электронов. То же самое показали опыты Клинман и ее команды для фермента АДГ, причем в ходе экспериментов были получены строгие доказательства того, что квантовое туннелирование было в данном случае частью механизма реакции.
Команде ученых под руководством Клинман удалось получить важные доказательства того, что туннелирование протонов часто происходит в ходе ферментативных реакций при температурах, при которых также протекают жизненные процессы. Другие коллективы ученых, в том числе и группа под руководством Найджела Скраттона из Манчестерского университета, проводили подобные эксперименты с другими ферментами и наблюдали кинетические изотопные эффекты, указывающие на то, что реакция сопровождается квантовым туннелированием[45]
. И все же вопрос о том, каким образом ферменты поддерживают квантовую когерентность и способствуют возникновению туннельного эффекта, остается противоречивым. Некоторое время считалось, что ферменты не статичны, что в ходе реакций они постоянно совершают колебания, движутся. Например, «челюсти» коллагеназы открываются и захлопываются каждый раз, когда они разрывают коллагеновую связь. Ученые полагали, что подобные движения, наблюдающиеся в ходе реакции, являются случайными либо призваны захватить субстраты и выровнять и упорядочить все атомы, вступающие в реакцию. Однако в наше время специалисты в области квантовой биологии утверждают, что подобные колебания — так называемые «приводные двигатели» и основная их функция — максимально близко подвести друг к другу атомы и молекулы, чтобы квантовое туннелирование частиц (электронов и протонов) стало возможным[46]. К этой теме — одной из самых захватывающих и быстроразвивающихся в квантовой биологии — мы вернемся в последней главе нашей книги.Так что же составляет «квантовую часть» квантовой биологии
Каждую отдельную биомолекулу, которая существует или когда-либо существовала в любой живой клетке, создали и разрушили ферменты. Ферменты как никакая другая субстанция близки к понятию «движущих сил жизни». Открытие того, что некоторые (а возможно, и все) ферменты функционируют на основе дематериализации частиц в одном месте пространства и мгновенной их материализации в другой точке, позволяет нам по-новому взглянуть на загадку жизни. Несмотря на то что многие вопросы, связанные с функционированием ферментов, пока не до конца понятны (например, роль перемещения белков), нет сомнений в том, что квантовое туннелирование играет большую роль в механизме их работы.
Несмотря на это, мы не можем не принимать во внимание критических замечаний, высказываемых многими учеными. Они признают открытия Клинман, Скраттона и других исследователей, однако утверждают, что квантовые эффекты играют в биологии такую же роль, как и в работе паровозов: их можно наблюдать, однако они в целом никак не способствуют пониманию того, как функционирует вся система. Данный аргумент нередко звучит в спорах о том, научились ферменты извлекать выгоду из квантовых явлений вроде туннелирования