Радикальное чувство направления
В начале этой главы мы обсуждали проблему, как может что-то столь слабое, как магнитное поле Земли, обеспечить достаточную энергию для того, чтобы изменить ход химической реакции и тем самым генерировать биологический сигнал, который будет сообщать, например, малиновке, в каком направлении она должна лететь. Оксфордский химик Питер Хор провел отличную аналогию, поясняя, как такая крайняя чувствительность может быть возможной: «Представьте, что у нас есть гранитный блок весом один килограмм. Сможет ли муха его опрокинуть? Здравый смысл подсказывает, что ответ, безусловно, „нет“. Но предположим, камень балансирует на одном ребре. Очевидно, что он не будет стабильным в таком положении и будет иметь тенденцию к падению влево или вправо. Теперь предположим, что в то время, как блок балансирует таким образом, муха приземляется на его правую сторону. Даже несмотря на то, что энергия, переданная мухой, будет крошечной, этого может быть достаточно, чтобы блок упал вправо, а не влево»[103]
.Мораль заключается в том, что крошечные энергии могут иметь значительные последствия, но только если система, в которой они работают, очень тонко сбалансирована между двумя различными состояниями. Так, чтобы обнаружить влияние очень слабого магнитного поля Земли, нам нужен химический эквивалент балансирующего на одном ребре гранитного блока — так, чтобы на него могли значительно влиять малейшие внешние воздействия, подобные слабому магнитному полю.
А теперь мы возвращаемся к Клаусу Шультену и его быстрым триплетным реакциям. Вы можете помнить, что электронные связи между атомами часто образуются в результате разделения пары электронов. Электроны этой пары всегда являются запутанными и почти всегда находятся в синглетном спиновом состоянии, то есть электроны имеют противоположные спины. Тем не менее надо отметить, что два электрона могут оставаться запутанными даже после того, как связь между атомами нарушена. Разделенные атомы, которые теперь называются свободными радикалами, могут расходиться, делая возможным изменение направления спина одного из запутанных электронов — сейчас уже находящихся в разных атомах, — тогда электроны оказываются в суперпозиции синглетного и триплетного состояний, как в описанной Шультеном быстрой триплетной реакции.
Важной особенностью этой квантовой суперпозиции является то, что она не обязательно равновесно сбалансирована: вероятности «поймать» пару запутанных электронов в синглетном или триплетном состоянии не равны. И самое главное, баланс между этими двумя вероятностями чувствителен к любым внешним магнитным полям. На самом деле угол магнитного поля по отношению к ориентации разделенной пары сильно влияет на вероятность обнаружить его в синглетном или триплетном состоянии.
Пары радикалов имеют тенденцию к крайней нестабильности, поэтому их электроны часто рекомбинируют с образованием продуктов химической реакции. Но точный химический характер продукта будет зависеть от синглет-триплетного баланса, высокочувствительного к магнитным полям. Чтобы понять, как это работает, мы можем думать о свободных радикалах как о промежуточной стадии реакции, как в метафоре с балансирующим гранитным блоком. В этом состоянии реакция настолько чувствительна к изменениям, что даже слабое магнитное поле — вспомним метафору с мухой — с индукцией менее 100 микротесла, подобное земному, является достаточным, чтобы повлиять на способ выпадения синглет-триплетного «жребия» и на появление определенных продуктов химической реакции[104]
. Наконец мы объяснили механизм, посредством которого магнитные поля могут влиять на химические реакции, и, как утверждал Шультен, обеспечивать работу птичьего магнитного компаса.Но Шультен понятия не имел, где именно в теле птицы эта предполагаемая реакция радикалов проходит, — по-видимому, было бы разумнее всего предположить, что они расположены в головном мозге. Но для того, чтобы механизм заработал, пара радикалов должна для начала возникнуть (как и гранитный блок кто-то должен поставить на ребро). Шультен представил свою работу в Гарварде в 1978 году, где описал эксперименты, проведенные его группой в Геттингене, в которых лазерный импульс был использован для создания радикалов из пар запутанных электронов. В аудитории был выдающийся ученый по имени Дадли Хершбах, который впоследствии получил Нобелевскую премию по химии. В конце лекции Хершбах спросил с добродушной насмешкой: «Но Клаус, где же у птицы находится лазер?» Под давлением и чтобы остроумно ответить уважаемому старшему преподавателю, Шультен предположил, что если действительно свет был необходим, чтобы активировать пару радикалов, то, возможно, этот процесс происходит в глазах птиц.